





manne

HHHHH



#### Witzenmann GmbH

Östliche Karl-Friedrich-Str. 134 75175 Pforzheim, Germany Phone +49 7231 581- 0 Fax +49 7231 581- 820 wi@witzenmann.com www.witzenmann.de 1301uk/8/05/20/pdf

# WITZENMANN

**METAL HOSES** 

Fully revised version of metal hoses handbook.

As at: November 2015

Technical changes reserved.

### Technical details are available as a PDF download on the Internet at www.flexperte.de

Our calculation and design software FLEXPERTE contains all of the technical principles required for the configuration of expansion joints, metal hoses, metal bellows and hangers and supports.



1301uk/8/05/20/pdf

## **CONTENTS**

| 1   | Witzenmann – the specialist for flexible metal elements  | 6  |
|-----|----------------------------------------------------------|----|
| 2   | Products and production methods                          | 10 |
| 2.1 | HYDRA hose assemblies                                    | 12 |
| 2.2 | HYDRA corrugated hoses                                   | 13 |
| 2.3 | HYDRA hose braidings                                     | 17 |
| 2.4 | Materials for metal hose assemblies                      | 19 |
| 2.5 | Connection fittings and interfaces                       | 19 |
| 2.6 | HYDRA stripwound hoses                                   | 23 |
| 2.7 | Standards and guidelines                                 | 27 |
| 2.8 | Quality management                                       | 32 |
| 2.9 | Certification and customised approvals                   | 36 |
| 3   | Typical metal hose applications                          | 38 |
| 3.1 | Industry                                                 | 40 |
|     | - Flexible heat tracing system                           | 40 |
|     | - Insulating hose assemblies                             | 41 |
|     | - Double hose assemblies                                 | 42 |
|     | - Hose assemblies for chemical substances                | 43 |
|     | - Hose assemblies for foodstuffs                         | 45 |
|     | - PTFE-lined metal hoses                                 | 45 |
|     | - Hose assemblies for presses                            | 46 |
|     | - High-pressure hoses for technical gases                | 47 |
|     | - Lance hoses for steel plants                           | 49 |
|     | - Vibration absorbers                                    | 50 |
| 3.2 | Vacuum technology / medical technology / optoelectronics | 52 |
|     | - Vacuum hoses                                           | 52 |
|     | - Miniature hoses                                        | 52 |

| 3.3 | Green energy                                         | 53 |
|-----|------------------------------------------------------|----|
|     | - Solar hoses                                        | 53 |
|     | - Combined heat and power units                      | 54 |
|     | - Flexible joints for solar panels                   | 54 |
| 3.4 | Heating and ventilation                              | 56 |
|     | - Hoses for kitchens and bathrooms                   | 56 |
|     | - Drinking water feeder hoses                        | 57 |
|     | - Gas hoses according to DIN 3384                    | 58 |
|     | - HYDRA GS – gas hoses for buildings as per EN 15266 | 58 |
|     | - Gas hoses for household devices as per EN 14800    | 59 |
|     | - Equipment piping                                   | 61 |
|     | - Cooling ceiling hoses                              | 62 |
|     | - Sprinkler mounting systems                         | 63 |
|     | - Heat exchangers                                    | 64 |

| 4   | Design, calculation and installation for corrugated hoses | 66  |
|-----|-----------------------------------------------------------|-----|
| 4.1 | Pressure resistance and service life                      | 68  |
| 4.2 | Pressure loss and flow-induced vibrations                 | 76  |
| 4.3 | Absorption of movements                                   | 87  |
| 4.4 | Absorption of thermal expansions                          | 91  |
| 4.5 | Compensation of mounting tolerances and pipework offset   | 97  |
| 4.6 | Absorption of vibrations                                  | 98  |
| 4.7 | Installation and assembly instructions                    | 100 |
|     | ,                                                         |     |

| 5   | Product testing at Witzenmann                      | 108 |
|-----|----------------------------------------------------|-----|
| 5.1 | Testing and analysis options                       | 110 |
| 5.2 | Production-related tests on metal hoses            | 112 |
| 5.3 | Type approval and destructive tests on metal hoses | 114 |



## **CONTENTS**

| 6   | Technical tables                                            | 116 |
|-----|-------------------------------------------------------------|-----|
| 6.1 | Hose selection from the manual                              | 118 |
| 6.2 | Hose selection with FLEXPERTE                               | 123 |
| 6.3 | HYDRA annularly corrugated hoses – goods sold by the metre  | 124 |
|     | - RS 330 / 331 – stainless steel annularly corrugated hoses | 124 |
|     | - RS 321 – stainless steel annularly corrugated hoses       | 126 |
|     | - RS 341 – stainless steel annularly corrugated hoses       | 128 |
|     | - RS 531 – stainless steel annularly corrugated hoses       | 130 |
|     | - RS 430 – stainless steel annularly corrugated hoses       | 132 |
|     | - RZ 331 – bronze annularly corrugated hoses                | 134 |
|     | - RS 351 – semi-flexible annularly corrugated hoses         | 136 |
|     | - IX 331 – semi-flexible annularly corrugated hoses         | 137 |
|     | - ME 539 – semi-flexible helical corrugated hoses           | 138 |
| 6.4 | Connection fittings                                         | 139 |
|     | - Connection fittings for HYDRA corrugated hose assemblies  | 140 |
|     | - Self-assembly connection fittings                         | 174 |
| 6.5 | HYDRA annularly corrugated hose assemblies                  | 184 |
|     | - HYDRA double hose assemblies                              | 184 |
|     | - HYDRA insulating hose                                     | 186 |
|     | - PTFE-lined HYDRA hose assemblies                          | 187 |
|     | - HYDRA vibration absorber                                  | 188 |
|     | - HYDRA gas hose assemblies according to DIN 3384           | 190 |
|     | - Hose assemblies for presses                               | 194 |
|     | - Hydraflex – hose assemblies for semi-flexible pipework    | 198 |
| 6.6 | HYDRA stripwound hoses – fittings, hose assemblies          | 200 |
|     | - HYDRA protective hoses                                    | 202 |
|     | - Connection fittings for HYDRA – stripwound hoses          | 228 |
|     | - Air extraction, exhaust and conveying hoses               | 231 |
|     | - Flexible arms                                             | 250 |

| 7   | Data sheets                                     | 260 |
|-----|-------------------------------------------------|-----|
| 7.1 | Pipes, flanges, pipe bends, threads             | 262 |
| 7.2 | Material data sheets                            | 288 |
| 7.3 | Nominal pressure levels for malleable iron      | 312 |
| 7.4 | Corrosion resistance                            | 313 |
| 7.5 | Conversion tables, formula symbols, steam table | 352 |
| 7.6 | Glossary                                        | 362 |
| 7.7 | Inquiry specification                           | 370 |



## WITZENMANN, THE SPECIALIST FOR FLEXIBLE METAL ELEMENTS

WITH MALE MANY

#### 1 Witzenmann - the specialist for flexible metal elements



#### Solution competence

Flexible metal elements are used whenever flexible components must be sealed in a pressure-, temperature and media-resistant manner, when deformations of pipe systems caused by changes in temperature or pressure must be compensated, when vibrations occur in piping systems, when media must be transported under pressure or when a high vacuum must be sealed. They include e.g. metal bellows, diaphragm bellows, metal hoses or expansion joints.

Witzenmann, the inventor of the metal hose and founder of the metal hose and expansion joint industry is the top name in this area. The first invention, a metal hose which was developed and patented in 1885, was followed by a patent for the metal expansion joint in 1920.

(HYDRA)

## **OUR FLEXIBLE NETWORK** IN THE GROUP

## America

Brazil Mexico USA

#### Europe Austria

Belgium **Czech Republic** France Germany Great Britain Italy Poland Russia Slovakia Spain Sweden



India Japan

Korea

#### 1. Our Flexible Network in the Group

#### **Global presence**

As an international group of companies with over 4,000 employees and over 24 subsidiaries, Witzenmann today stands for innovation and high quality. In its role as technological leader, Witzenmann provides comprehensive development know-how and the broadest product range in the branch. It develops solutions for flexible seals, vibration decoupling, pressure dampening, compensation of thermal expansion, flexible mounting or transport of media. As a development partner to customers in industry, the automotive sector, the building equipment sector, the aviation and aerospace industry and many other markets, Witzenmann manufactures its own machines, tools and prototypes, and also has comprehensive testing and inspection systems.

An important factor in its cooperation with customers is the technical advice provided by the Witzenmann competence centre, located at the Pforzheim headguarters in Germany. Here, teams of highly-gualified engineers work together with the customer to develop products and new applications. Our experts support customers from the first planning stage up to series production.

#### Better products

This type of broad-based knowledge results in synergy effects, which can be experienced in each product solution. The variety of application areas is nearly limitless. However, all the product solutions have the same thing in common: maximum safety, even under sometimes extreme operating conditions. This applies to all Witzenmann solutions - ranging from highly-flexible hose assemblies or expansion joints for use in industry to precision bellows for high-pressure fuel pumps, piezo injectors or pressure sensor spark plugs in modern car engines.



## PRODUCTS AND PRODUCTION METHODS

#### 2. Products and production methods

| 2.1 | HYDRA hose assemblies                  | 12 |
|-----|----------------------------------------|----|
| 2.2 | HYDRA corrugated hoses                 | 13 |
| 2.3 | HYDRA hose braidings                   | 17 |
| 2.4 | Materials for metal hose assemblies    | 19 |
| 2.5 | Connection fittings and interfaces     | 19 |
| 2.6 | HYDRA stripwound hoses                 | 23 |
| 2.7 | Standards and guidelines               | 27 |
| 2.8 | Quality management                     | 32 |
| 2.9 | Certification and customised approvals | 36 |

#### 2.1 HYDRA® hose assemblies

A hose assembly consists of a corrugated hose as leakproof and pressure-bearing element, hose braiding to absorb longitudinal force due to inner pressure as well as radial support for the hose and connection fittings as an interface to the surroundings. In addition, it is possible to mount a PTFE liner for increasing the chemical stability or for reducing the loss of pressure as well as an outer round wire coil or a protective hose to protect the metal hose mechanically.

The range of nominal diameters for HYDRA corrugated hoses in the standard program lies between 4 mm and 300 mm inside diameter. Larger diameters are available on request. The permissible operating pressures with small dimensions are sufficient with 4-fold cracking pressure safety up to 300 bar. The pressure resistance of larger dimensions is lower for technical reasons. The maximum temperature resistance for stainless steel hoses depending on compression load is approx. 550 °C; ,higher values are possible with other materials. Stainless steel corrugated hoses can be used at temperatures of up to -270 °C in the low temperature range.



Fig. 2.1.1 HYDRA hose assembly with PTFE interior liner.

#### 2.2 HYDRA® corrugated hoses

Corrugated hoses are thin-walled, cylindrical components with a corrugated structure in their surface area. The type of corrugation differentiates annularly corrugated and coil corrugated hoses. The annular corrugation (fig. 2.2.1 left) has a large number of equally-spaced parallel corrugations, whose main plane is perpendicular to the hose axis. With the helical corrugation (fig. 2.2.1 right) a mostly right-handed helix with constant pitch runs the whole length of the hose.

Annularly corrugated hoses are technically superior to helically corrugated hoses. Their profile direction perpendicular to the hose axis enables an undisturbed interface of the connection fittings and thereby increases the process stability during assembly and in service. In addition, annularly corrugated hoses do not produce torsion loads with increased pressure or pressure shocks. Thus, today annularly corrugated hoses are generally preferred.

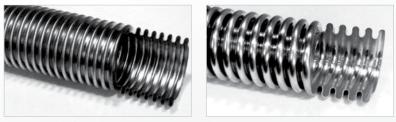



Fig. 2.2.1 Annularly corrugated hose (left) and helically corrugated hoses (right)

Through their corrugated structure, metal hoses are flexible and pressure resistant. They are leakproof, temperature and corrosion resistant as well as torsionally rigid and are used in the following applications:

- For transport of liquids and gases under pressure,
- As vacuum pipe,
- As economic, flexible connection for absorbing movements, heat expansion and/or vibrations plus
- As filling hose.

When configured correctly, HYDRA metal hoses are robust and nearly maintenancefree components with a high degree of operational safety and a long service life.



(HYDRA)

#### 2.2 HYDRA® corrugated hoses

The elastic behaviour of the corrugated profile determines the flexibility of the corrugated hose. Fig. 2.2.2 shows that the corrugations are stretched on the outer curve, while they are compressed in the inner curve.

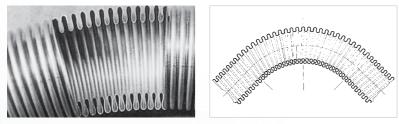



Fig. 2.2.2 Bending line of a corrugated hose in the cutaway model (left) and schematic (right)

Flexibility and pressure resistance of corrugated hoses are determined by the profile form: Flexibility increases with the increase of the profile height and with the reduction in the pitch, and at the same time the pressure resistance reduces. A reduction of the ply thickness increases flexibility and reduces the compressive strength. Table 2.2.1 sums up the influence of wall thickness and corrugation on flexibility and compressive strength.

| Corrugation                                 | Wall thickness | Pressure<br>resistance | Flexibility |
|---------------------------------------------|----------------|------------------------|-------------|
| Narrow (cf. fig. 2.1.3)<br>Hose type RS 321 | Standard       | +                      | ++++        |
| Standard                                    | Standard       | ++                     | +++         |
| Hose type RS 531, RS 430, RS 331            | increases      | +++                    | ++          |
| Wide (cf. fig. 2.1.4)<br>Hose type RS 341   | Standard       | ++                     | ++          |

Table 2.2.1 relationship between corrugated geometry, pressure resistance and flexibility of a corrugated hose

#### 2.2 HYDRA® corrugated hoses



Fig. 2.2.3 Narrow corrugated, flexible hose profile

Fig. 2.2.4 Wide corrugated, pressure resistant hose profile



Fig. 2.2.5 Semi-flexible hose profile with low corrugation height

If, for example, in a pipework only a single bending of the hose is required, flat, semi-flexible profiles can be used. Fig. 2.2.5 shows an example of such a hose. Semi-flexible hoses are very cost-effective due to the minimal use of materials. Therefore, there has been a large number of customised profile forms in addition to the standard program.

HYDRA corrugated hoses are produced mechanically or hydraulically. Mechanical hose production is performed continuously in an endless procedure. Here, a cold-rolled metal strip with a ply thickness between 0,1 and 0,4 mm is formed and welded into an endless stainless steel tube. The hose profile is then formed by rotating corrugated tools from the outside into the tube. Depending on the profile type, one or more forming stages are required. Fig. 2.2.6 shows an example of corrugated tools in action. The profile form of the hose is defined by the contour and sequence of the corrugating tools used.

After forming the corrugations, the hoses are rolled onto drums and made available for further processing. With highly flexible hoses with undercut profile (fig. 2.2.3) there is an additional production stage when the hose is compressed. Mechanically produced metal hoses are generally single-ply hoses. In principle, multi-ply hoses can be produced using this method.

(HYDRA)

HYDRA

#### 2.2 HYDRA® corrugated hoses

However, tube segments have then to be inserted into each other before the corrugations are formed, which leads to an intermittent and thereby less efficient process. The same applies to the use of seamless tubes as raw materials.



Fig 2.2.6 Corrugation tools in action

Hoses with large nominal diameters and/or heavy versions are produced hydraulically. Here, pipes are cut to length after welding is completed. During the forming of the corrugations, a cylindrical section of the tube is separated using outside and inside tools. Subsequently inside pressure is applied hydraulically. The pressure first shapes the sealed pipe section into the pre-corrugation. In the next step the tool is axially closed and the actual corrugation is formed as the pre-corrugation straightens up.

The length of individual hydraulically formed hose sections is limited due to the process. Bigger hose lengths can be manufactured via radial welding of the produced hose sections.

#### 2.3 HYDRA® hose braidings

HYDRA hose braidings limit the expansion of a corrugated hose under internal pressure in axial direction. This increases the resistance to internal pressure of hoses by more than one order of magnitude. In addition, braided corrugated hoses can transmit tractive forces in an axial direction. HYDRA hose braidings flexibly suits the movement status of the hose even if a second braid is chosen to increase pressure resistance.

Fig. 2.3.1 schematically shows the functioning of the wire netting. It rests on the principle of lazy tongs. The expanded position is set by axial tension with the wires with the smallest crossing angles lie closely to each other and a hose braiding of the smallest possible diameter and the largest possible length. The crossing angle and diameter increase to the largest value through axial pushing together up to the compensation limit with the wires are also close together and the shortest length is achieved.

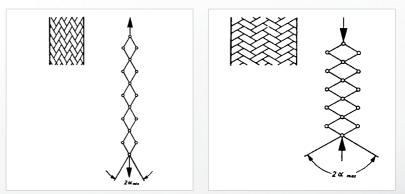



Fig. 2.3.1 Mode of action of hose braiding (schematic)

Fig. 2.3.2 shows the production of HYDRA hose braidings on a fully automatic braiding machine. Here, metal wire coils (strands according to ISO 10380) are braided from bobbins moving in opposite directions either directly on the metal hose or on a core. During the rotation, each clapper moves past alternatively in front of and behind the one it encounters.



#### 2.3 HYDRA® hose braidings

Hollow braidings are taken off from the core after production, separated into sections and processed further.

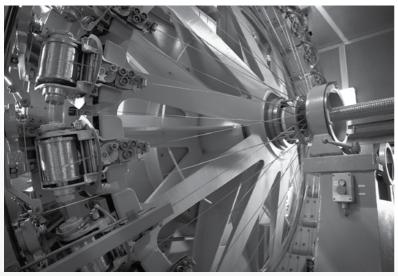



Fig. 2.3.2 Braiding production

With standard braiding, the wires on a wire clapper are parallel to each other, with knurled braiding the individual wires of a clapper are additionally braided with each other. This makes it possible to increase the wire cross section per clapper and the load capacity. Standard braids are used up to the hose nominal diameter DN 150; with larger nominal diameters knurled braidings are generally used.

The standard material for HYDRA hose braidings is cold-rolled stainless steel. Alternatively, bronze wires or plastics, such as carbon or aramid fibres, can be processed into hose braiding.

#### 2.4 Materials for metal hose assemblies

Materials used in hose manufacture must feature a high degree of formability. For this reason, metals with a face centred cubical structure are preferred. The most important materials used in hose production are austenitic stainless steels and bronze, nickel based alloys are used less often. Materials are selected on the basis of requirements relating to

- Media and corrosion resistance,
- Temperature resistance and
- Mechanical strenght and fatigue resistance

The standard material for HYDRA metal hoses is austenitic stainless 1.4404. It features high corrosion resistance, good mechanical strenght, high fatigue resistance, excellent workability Alternatively, the Ti-stabilised stainless steels 1.4541 and 1.4571, as well as with higher corrosion requirements the materials 1.4435, 1.4547 or 1.4565 can be used. Bronze (2.1020) is preferred due to the higher inner damping in vibration technology.

The preferred braid material is austenitic stainless steel 1.4301 or 1.4306 based on corrosion resistance.

#### 2.5 Connection fittings and interfaces

A large number of different connections enable a wide range of applications for HYDRA metal hoses. Fig. 2.5.1 shows typical examples

Practically every connection produced from a welded or brazed material can be combined with a metal hose so that customised solutions are possible in addition to hose assemblies. An overview of common standard connections, possible materials, permissible pressure stages as well as the appropriate dimensions can be found in the technical tables in chapter 6.3.





#### 2.5 Connection fittings and interfaces



Fig. 2.5.1 Hose assemblies with different connection fittings

With factory pre-assembled hose assemblies the labelling of the type of connection is the first letters of the type designation of the hose assembly:

Flanged joints:

- A: Loose flange with welding collar
- B: Loose flange with collar connection piece
- C: Loose flange with welding rim swivel flange
- G: Welding neck flange

Threaded connections: L: Internal thread, fixed M: External thread, fixed N: Internal thread, swivel

Screw connections: Q: Internal thread R: External thread S: Pipe end

Pipe connection: U: All types of pipe fittings

Couplings: W: All types of coupling

#### 2.5 Connection fittings and interfaces

In addition to the use of factory-made hose assemblies, it is also possible to assemble hoses sold by the metre on site. The goods sold by the metre are cut to length and fitted with the appropriate connectors. Fig. 2.5.2 shows an un-braided annularly corrugated hose with fittings for self-assembly. The dimensions of the connectors and concrete assembly instructions are listed in chapter 6.3.

The non-braided hose RS 341 S00 with wide corrugation can be used as selfassembly annularly corrugated hoses, e.g for device piping or for connecting heaters. The braided corrugated hose RS 331 S12 with high corrugations is applicable for pressurised piping up to 16 bar operating pressure. Metal hoses with connection fittings for self-assembly cannot be used for dynamic loads, frequent movement, dangerous media or thermal oils.



Fig. 2.5.2 Annularly corrugated hose for self-assembly

The connection of hose, braiding and connectors has a significant influence on the pressure resistance and service life of the metal hose assembly and must therefore be carried out very carefully. The method of attachment is centred on the version of connection fittings and the demands on the hose.



#### 2.5 Connection fittings and interfaces

The most common connection method is fusion welding. Fig. 2.5.2 shows the corresponding connection of a HYDRA metal hose. When joining metal hose, braiding and connector together by fusion welding, it is important to completely cover all the components and, at the same time, keep the thermal load on the braiding wires to a minimum. Too large a thermal load of the braiding reduces the strength of the braiding wires and thereby reduces the pressure resistance of the hose assembly.

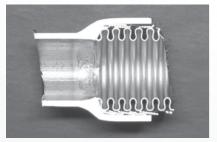



Fig. 2.5.2 Welded connection of HYDRA hose assemblies

Different types of connections, e.g. joining together connectors made of malleable iron can be completed by brazing. The same technological requirements apply here – the good integration of all components as well as minimum possible thermal load – as with fusion welding. Inductive brazing has proved to be a productive and reliable brazing process.

Processes are currently being developed for the reliable integration of non-metallic braiding, e.g. made of aramid or carbon fibres.



Fig. 2.5.3 Metal hose assembly with aramid coating



#### 2.6 HYDRA® stripwound hoses

HYDRA stripwound hoses are created in a continuous process by profiling and helical coiling of a cold-rolled metal strip on a mandrel. Based on the low degree of deformation, stripwound hoses can also be made out of ferritic materials. Typical output materials are zinc-plated steel, stainless steel or brass, if necessary with a chromium-plated or nickel-plated surface.

When manufacturing stripwound hoses, the metal strip is first profiled in a multistage continuous process. Fig. 2.6.1 shows this in an exemplary way on the left side. In the next stage, the profiled strip is wound round a mandrel in a spiral form. The axial guiding of the strip and pressing onto the mandrel produces several revolving rollers as shown in fig. 2.6.1 on the left. In the second circulation round the mandrel, the fold on the profile is smoothed out so that the individual coils are linked to each other. The adjustable connection of the profile coils achieves the flexibility and mobility of the metal stripwound hose (fig. 2.6.2).

In order to avoid the stripwound hose unwinding, it is necessary to fix the hose ends after separating the endless hose.

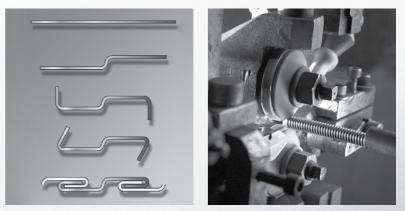



Fig. 2.6.1 Profiling and integration of the cold rolled strip (schematic, left) and production of stripwound hoses (right)

#### 2.6 HYDRA® stripwound hoses

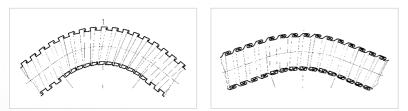



Fig 2.6.2 Movement of the stripwound hose by adjusting the coils relative to each other for an engaged profile (left) and an integrated profile (right)

Stripwound hoses are available in round and polygonal cross-section design forms; the profile forms stretch from the simple engaged profile up to the high tenacity integrated profile. Increased leak tightness can be achieved by introducing a sealing thread during the winding process into a specially profiled sealing chamber. Cotton, rubber and ceramic threads are used as sealing agents. To increase the leak tightness, for example against water splashes, PVC or silicone coatings can be used. Examples of stripwound hoses are shown in figures 2.6.3 to 2.6.6.

The production range of HYDRA stripwound hoses runs from miniature protective hose with 1 mm inside diameter up to the nominal diameter DN 500. The maximum manufactured lengths are dependent on the version and diameter, that can be over 100 m and more.



Fig. 2.6.3 rectangular stripwound hose with engaged profile





Fig. 2.6.4 stripwound hose with integrated profile



1301uk/8/05/20/pdf





#### 2.6 HYDRA<sup>®</sup> stripwound hoses



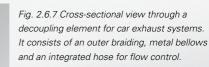



Fig. 2.6.6 stripwound hose with plastic coating

The advantages of stripwound hoses are a high resistance to tension and transversal pressure as well as chemical and thermal stability. They are, for example, used

- As protective hose for light conductors and electrical wiring,
- As over-bending protection for corrugated hose assemblies,
- As suction and conveying hose for smoke, shavings and granulates,
- As exhaust gas hose or
- As liner to optimise flow conditions

in mechanical engineering, measurement and control technology, communications technology and fibre optics as well as medical technology. Stripwound hoses are used in very large numbers as a liners in decoupling elements for car and HGV exhaust systems (fig. 2.6.7).



#### 2.6 HYDRA® stripwound hoses

The group of wound metal hoses also includes flexible arms – also called swan necks –, that are created by winding a round wire coil together with a triangular wire (fig. 2.6.8). They can be bent in any direction and remain fixed in the corresponding position. Flexible arms are used for instance as adjustable brackets for lamps, magnifying glasses or microphones. Fitted with an inner plastic hose, flexible arms can also be used as refrigerant hoses in a machine tool. Their flexibility enables the pinpoint application of cooling lubricant.

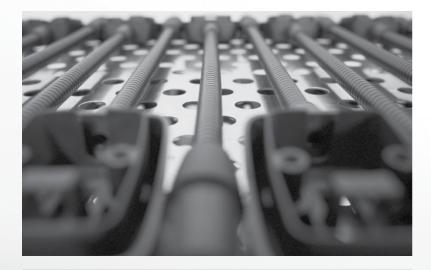





Fig. 2.6.8 Flexible arm

2.7 Standards and guidelines

Construction, design and use of metal hoses are influenced by different general and/or application-related standards. While the list is not exhaustive, table 2.7.1 summarizes important standards for metal hoses.

The most important general rules for metal hoses are the pressure equipment directive (97/23/EG, in short PED) with the accompanying product standard DIN EN 14585-1 "Pipework-Corrugated metal hose assemblies for pressure applications" and DIN EN ISO 10380 "Pipework-Corrugated metal hoses and metal hose assemblies". Explanations are provided below:

#### Pressure equipment directive and DIN EN 14585-1

The Pressure Equipment Directive applies for deliveries inside or to the European Economic Area (EEA). The guideline has legal validity and is binding on the user and manufacturer. It regulates the manufacture and marketing of pressure vessels with a maximum permissible operating pressure PS > 0.5 bar. According to the terminology of the guideline, metal hoses fall under the "pipeline" type of pressure devices.

The significant element of the pressure equipment directive is the classification of pressure equipment according to their potential risk in different categories. The potential risk of metal hoses is determined by the nominal diameter DN, the maximum permissible operating or design pressure PS, the danger of the medium, the aggregate status (liquid/gaseous) and the steam pressure of the medium.

All metal hose assemblies DN  $\leq$  25 come under the area of "sound engineering practice" (SEP).

Categories I and II are typical for metal hose assemblies, category III less so. Hose assemblies in categories I – III are allocated a "CE" label. Depending on the category, the hose manufacturer has to carry out a conformity assessment. There are 9 different procedures with 11 modules available. The modules describe procedures that the manufacturer uses to ensure and explain that the relevant product meets the requirements of the guideline.



Special metal hose applications for the aerospace, nuclear technology, vehicle technology, medical technology or the field heating and ventilation are regulated by other guidelines and are therefore excluded from the PED. The PED only describes the basic requirements for pressure equipment. The specification of regulations for certain components are subject to relevant product standards. For metal hoses that is DIN EN 14585-1. It describes the classification, materials, design, manufacture, approval and documentation for metal hose assemblies. In particular, with regard to type approval, DIN EN 14585-1 refers to DIN EN ISO 10380.

#### ISO 10380

DIN EN ISO 10380 "Pipework-Corrugated metal hoses and metal metal hose assemblies" is the most important international standard for metal hoses. It was last updated in 2013 and sets out the minimum requirements for the design, manufacture and inspection of corrugated metal hoses and metal hose assemblies. Within the meaning of the PED, DIN EN ISO 10380 has the character of a supportive standard.

According to DIN EN ISO 10380 metal hoses are characterised by their nominal width (DN), the operating pressure at the working temperature (PS), the nominal pressure (PN) and the service life in the U-bend test or cantilever test.

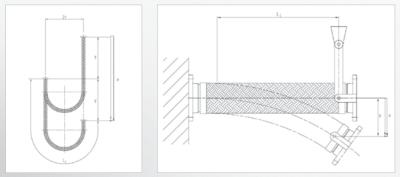



Fig. 2.7.1 U-bend- (left) and cantilever test (right), source DIN EN ISO 10380:2013

#### 2.7 Standards and guidelines

The previous allocation to nominal pressure levels according to DIN EN ISO 10380:2003 will not apply in future. This means that intermediate values such as PN 90 are possible.

The test pressure is at least 1.43 times the nominal pressure. The remaining extension of the hose assembly test pressure must not exceed 1%. This criterion defines the nominal pressures for for non-braided hose assemblies. The nominal pressure for braided hose assemblies is generally determined by the burst pressure of the hose assembly; it must be at least 4 times the nominal pressure.

Four quality levels differentiate the service life of the hoses

Type 1-50 – Corrugated metal hose with high flexibility and long service life ("high cycle life hose"):

- Bending radius type 1,
- Average service life 50,000 load cycles,
- Minimum service life 40,000 load cycles.

Type 1-10 – Corrugated metal hose with high flexibility and normal service life ("standard cycle life hose"):

- Bending radius type 1,
- Average service life 10,000 load cycles,
- Minimum service life 8,000 load cycles.

Type 2-10 – Corrugated metal hose with normal flexibility:

- Expanded bending radius type 2,
- Average service life 10,000 load cycles,
- Minimum service life 8,000 load cycles.

Type 3 - Corrugated metal hose, with pliability requirements

No service life specification.

The type approval of the hose assemblies can be completed with or without monitoring via an external expert. In the first case, all hose assemblies can be identified as "certified products according to EN ISO 10380", in the second case merely as a "product according to EN ISO 10380".

1301uk/8/05/20/pdf



The conformity of the product characteristics with the details from the type approval must be verified for each type of hose at regular intervals by repeat tests. The repeat test intervals are 3 years for burst pressure, elongation and pliability and 5 years for service life.

Each manufacturer of metal hoses and metal hose assemblies according to EN ISO 10380 must implement a quality assurance system according to ISO 9001. Critical production parameters must be continually monitored. Suitably qualified personnel must be used and proof of the required qualification produced. All production, inspection and testing facilities must be in proper, calibrated condition according to ISO 9001.

| Standard             | Title                                                                                                                                      | last update | Comment                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------|
| 1. general standard  | s and standards for corrugated hoses                                                                                                       |             |                                                |
| ISO 10380            | Pipework – corrugated metal hoses and metal hose assemblies                                                                                | End of 2012 |                                                |
| ISO 10806            | Pipework – fittings for corrugated metal hoses                                                                                             | March 2004  |                                                |
| ISO 7369             | Pipework – metal hoses and hose assemblies – vocabulary                                                                                    | March 2005  |                                                |
| ISO 6708             | Pipework components – definition and selection of DN (nominal size)                                                                        | Sept. 1995  |                                                |
| EN 14585-1           | Corrugated metallic hose assemblies for pressure applications                                                                              | April 2004  | Product standard for<br>DGRL                   |
| DIN EN 13480-1       | Metallic industrial piping; general information<br>(Amendment1)                                                                            | Aug. 2008   | harmonised standard                            |
| DIN EN 13480-3       | Metallic industrial piping; design and calculation (Amendment1)                                                                            | Oct. 2010   | harmonised standard                            |
| EN 13480-5           | Metallic industrial pipes; inspection and testing                                                                                          | June 2006   | harmonised standard                            |
| EN 1092-1            | 092-1 Flanges and their joints – circular flanges for<br>pipes, fittings, valves and accessories – part 1:<br>Steel flanges, PN designated |             | harmonised standard                            |
| 2. Standards for str | ipwound hoses                                                                                                                              |             |                                                |
| ISO 15465            | Pipework – stripwound metal hoses and metal hose assemblies                                                                                | July 2007   | for stripwound hose types SG-; SA-             |
| DIN EN<br>50086-2-4  | Conduit systems for cable management - Parts<br>2-4; particular requirements for conduit systems<br>buried underground                     | Dec. 2001   | VDE approval for<br>types SG-E-O and<br>SG-S-P |

#### 2.7 Standards and guidelines

| ISO 10807                              | Pipework – corrugated flexible metallic hose                                                                                                          | Jan. 1997  |                                                                                                              |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
|                                        | assemblies for the protection of electrical cables in explosive atmospheres                                                                           |            |                                                                                                              |
| ISO 21969                              | High-pressure flexible connections<br>for use with medical gas systems                                                                                | April 2004 |                                                                                                              |
| EN 12434                               | Cryogenic vessels – cryogenic flexible hoses                                                                                                          | Nov. 2000  |                                                                                                              |
| EN 1736                                | Refrigerating systems and heat-pumps – flexible<br>pipe elements, vibration isolators and expansion<br>joints – requirements, design and installation | Feb. 2009  | Vibration absorber<br>type VX                                                                                |
| EN 2827                                | Hose assemblies of stainless steels for chemical products                                                                                             | July 2006  |                                                                                                              |
| 4. Standards for hou                   | se and buildings technology                                                                                                                           |            |                                                                                                              |
| DIN 3383-1                             | Hose assemblies and connection valves for<br>gas safety hose assemblies, valves with quick<br>connection device                                       | June 1990  | Not in area of applicabi-<br>lity of DGRL,<br>DIN EN 14800 and<br>DIN EN 15069 supple-<br>ment this standard |
| DIN 3384                               | Stainless steel flexible hose assemblies for<br>gas applications-safety requirements, testing,<br>marking                                             | Aug. 2007  | In area of applicability<br>of DGRL, partially repla-<br>ced by DIN EN 15069,                                |
| EN 14800                               | Corrugated safety metal hose assemblies for the<br>connection domestic appliance using gaseouse<br>fuels                                              | June 2007  | Construction products<br>regulation (CPR) not in<br>application area of the<br>DGRL                          |
| EN 15069                               | Safety gas connection valves for metal hose<br>assemblies used for the connection of domestic<br>appliances using for gaseouse fuels                  | June 2008  | Construction products<br>regulation (CPR) not in<br>application area of the<br>DGRL                          |
| EN 15266                               | Stainless steel pliable corrugated tubing kits in<br>buildings for gas with an operating pressure up<br>to 0.5 bar                                    | Aug. 2007  |                                                                                                              |
| DVGW GW 354                            | Corrugated pipework of stainless steel<br>for gas and drinking water installations; requi-<br>rements and<br>tests                                    | Sept. 2002 | Partly deleted                                                                                               |
| TrinkwV 2011                           | Drinking water regulations                                                                                                                            | May 2011   |                                                                                                              |
| Factory Mutual<br>FM1637               | Flexible Sprinkler Hose with Threaded End<br>Fittings                                                                                                 | Feb. 2010  |                                                                                                              |
| Underwriters Labo-<br>ratories UL 2443 | Flexible Sprinkler Hose with Fittings for Fire<br>Protection Service                                                                                  | May 2010   |                                                                                                              |

Table 2.7.1 Standards overview

(HYDRA)

(HYDRA®)

#### 2.8 Quality management

Witzenmann's quality assurance system ensures that the products meet high quality requirements and thereby guarantees a high degree of service quality for the customers. Our quality assurance system is audited on a regular basis.

All subsidiaries in the Witzenmann-group fulfil regarding their QM systems, their welding approvals and supplier lists the necessary preconditions to supply hose assemblies according to PED.

Quality assurance is organised in two levels. Central quality assurance has responsibility over superordinate organisational and technical quality assurance measures. The quality depts of the individual business units assume quality planning, quality direction and quality inspection as part of order processing.

The quality assurance department is independent from production on an organisational level. It may issue instructions to all employees who carry out tasks which have an influence on quality.

#### Precise controls of suppliers

Witzenmann GmbH works exclusively with suppliers we have concluded quality assurance agreements with and which are certified at least according to ISO 9001. For semi-finished products such as bands, sheet metal, pipes and wires we require test certificates which are aligned according to the purpose of the component. Through supplier agreements and incoming inspections is ensured that the deliveries meet our ordering and acceptance test procedures. In this vein, we sometimes additionally restrict and define in more detail ranges for materials which are permissible according to DIN or other data sheets.

#### Production monitoring and traceability

The responsibility for the control and maintenance of production facilities as well as the properly performed production according to the relevant manufacturer's documents is exercised by the company supervisors in production. We are fully able to trace our products via our PPS system and archived production paperwork.

#### **Certified joining process**

Witzenmann GmbH is a certified welding facility according to DIN EN ISO 3834-2, AD 2000 HP0, DIN EN 15085, NADCAP, DIN 2303 as well as KTA 1401. Welding procedure qualification records (WPQR) are carried out according to DIN EN ISO 15614-1 as well as according to AD 2000 reference sheet HP 2/1. The welding instructions are in accordance with the requirements of DIN EN ISO 15609-1. According to DIN EN ISO 3834-2, the certifications or requirements necessary for special applications must be specified by the customer. The qualification of welders is ensured and requalified according to DIN EN ISO 9606-1, DIN EN ISO 9606-4 as well as DIN ISO 24394 for fusion welders or according to DIN EN ISO 14732 for the welding personnel.

The welding supervision corresponds to the requirements of DIN EN ISO 14731 as well as AD 2000 reference sheet HP3.

The applied brazing processes conform to the requirements according to AD 2000 instructions HP 0, point 3.4, DIN EN 13134 and VDTÜV welding technology instructions 1160. Brazing tests are carried out according to DIN EN 13133.



#### 2.8 Quality management

#### Monitoring of the measurement and test facilities

All measuring and test facilities are regularly checked for accuracy and reliability. Calibration dates are confirmed with monitoring indicators.

#### Approval tests

Prior to delivery, all products are subject to dimensional and visual testing, i.e. a visual inspection of hoses, weld seams and connecting parts as well as an inspection of installation length and connecting dimensions. A pressure and thightness test is carried out on hose assemblies prior to despatch. Depending on the height of the test pressure and the nominal diameter of the hose assembly, either a combined pressure/leak test with nitrogen under water or a hydraulic pressure test and then a leak test with nitrogen under water at reduced test pressure is carried out.

With hose assemblies that are not in the area of applicability of the PED, the test pressure is 1.3 times the nominal pressure (PN). If the PED are to be observed, the determination of the test pressure will confirm with the guidelines.

## If the customer does not provide details on the medium and operating conditions, hose assemblies without braid will be subject to leak test at 0.5 bar and braided hose assemblies a pressure/leak test at 10 bar.

In addition, further inspections can be performed according to customer requirements; e.g load cycle tests according to standard or load cycle tests under near operating conditions. The type and scope of the tests is coordinated with the customer. The testing can be monitored by a Witzenmann representative authorised to provide approvals, by an authorised representative of the customer, or an external certified agency.

#### 2.8 Quality management

#### **Test certificates**

Test certificates for approval test as well as for the materials can be requested. Strip material, which is normally available in stock, can be confirmed with test certificate 3.1 or also 3.2 according to DIN EN 10204.

Possible certificates related to the testing undertaken are listed in DIN EN 10204 (see Table 2.8.1.)

| Designa-<br>tion | Test certificate              | Туре             | Contents of certificate                                                                                     | Conditions                                                                                                    | Confirmation of<br>certificate                                                                                                                                                                                                                                                                         |
|------------------|-------------------------------|------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1              | Certificate of conformity     | non-<br>specific | Confirmation of<br>conformity with<br>order.                                                                | As per the deli-<br>very conditions<br>in the order                                                           | from the manufacturer                                                                                                                                                                                                                                                                                  |
| 2.2              | Plant report                  |                  | Confirmation of<br>conformity with<br>order with infor-<br>mation on results<br>of non-specific<br>testing. | or - if required<br>- in accordance<br>with official<br>regulations and<br>also applicable<br>technical rules |                                                                                                                                                                                                                                                                                                        |
| 3.1              | Inspection<br>certificate 3.1 | specific         | Confirmation<br>of conformity<br>with order with<br>information of<br>results of specific<br>testing.       | In accordance<br>with official<br>regulations and<br>also applicable<br>technical rules.                      | by manufacturer's<br>representative in charge<br>of approvals who is<br>independent of the<br>production department.                                                                                                                                                                                   |
| 3.2              | Inspection<br>certificate 3.2 |                  | Confirmation<br>of conformity<br>with order with<br>information of<br>results of specific<br>testing.       |                                                                                                               | by manufacturer's<br>representative in charge<br>of approvals who is<br>independent of the<br>production department,<br>and by representative<br>in charge of approvals<br>as authorised by the<br>ordering party, or the<br>representative in charge<br>of approvals named in<br>official regulations |

Table 2.8.1 Test certificate as per DIN EN 10204



#### 2.9 Certification and customised approvals

In 1994, Witzenmann was the first company in the industry to be certified according to DIN ISO 9001. Today, Witzenmann GmbH possesses the following general guality and environmental certifications:

#### ISO/TS 16949

|  | ISO | 900 | 1 |
|--|-----|-----|---|
|--|-----|-----|---|

ISO 14001

EN 9100

Druckgeräterichtlinie

AD 2000 - Merkblatt W 0

AD 2000 - Merkblatt HP 0 / DIN EN ISO 3834-2 / HP 100 R

KTA 1401 und AVS D100/50

IMQ

DG

ASME U-Stamp

Product-specific approvals were issued by:

#### Gas/Water



DVGW Deutscher Verein des Gas- und Wasserfaches e.V., Germany **DVGW** (Association of German Gas & Water Engineers)

ÖVGW Österreichische Vereinigung für das Gas- u. Wasserfach, Austria (Austrian Association for Gas and Water) SVGW Schweizerischer Verein des Gas- und Wasserfaches,



Switzerland (Swiss Association for Gas and Water)



Insieme per la Qualitá e la Sicurezza, Milan, Italy

۵Ţ-

Danmarks Gasmateriel Prøvning, Denmark

#### 2.9 Certification and customised approvals

#### **Fire protection**

VdS



Verband der Sachversicherer e.V., Germany

FΜ FM Factory Mutual Research, USA **VPPROVED** 

#### Shipping

| The DO              | ABS                                         |
|---------------------|---------------------------------------------|
| <b>ABS</b>          | American Bureau of Shipping, USA            |
| 0                   | BV                                          |
|                     | Bureau Veritas, France                      |
|                     | DNV                                         |
| DNV·GL              | Det Norske Veritas, Norway                  |
|                     | LRS                                         |
| Lloyd's<br>Register | Lloyd's Register of Shipping, Great Britain |
|                     |                                             |

#### Other

| AN ROD              | RTN – RosTechNadzor                                               |
|---------------------|-------------------------------------------------------------------|
|                     | Federal Supervisory Authority for Ecology, Technology and Nuclear |
|                     | Technology, Russia                                                |
| $\overline{\wedge}$ | VDE                                                               |
|                     | Prüf- und Zertifizierungsinstitut, Germany                        |
| A                   | Areva NP GmbH                                                     |
| AREVA               | for the network of nuclear power plant operators, Germany         |



## **TYPICAL METAL HOSE APPLICATIONS**

#### 3. Typical metal hose applications

| 3.1 | Industry                                                 | 40 |
|-----|----------------------------------------------------------|----|
|     | - Flexible heat tracing system                           | 40 |
|     | - Insulating hose assemblies                             | 41 |
|     | - Double hose assemblies                                 | 42 |
|     | - Hose assemblies for chemicals substances               | 43 |
|     | - Hose assemblies for foodstuffs                         | 45 |
|     | - PTFE-lined metal hoses                                 | 45 |
|     | - Hose assemblies for presses                            | 46 |
|     | - High-pressure hoses for technical gases                | 47 |
|     | - Lance hoses for steel plants                           | 49 |
|     | - Vibration absorbers                                    | 50 |
| 3.2 | Vacuum technology / medical technology / optoelectronics | 52 |
|     | - Vacuum hoses                                           | 52 |
|     | - Miniature hoses                                        | 52 |
| 3.3 | Green energy                                             | 53 |
|     | - Solar hoses                                            | 53 |
|     | - Combined heat and power units                          | 54 |
|     | - Flexible joints for solar panels                       | 54 |
| 3.4 | Heating and Ventilation                                  | 56 |
|     | - Hoses for kitchens and bathrooms                       | 56 |
|     | - Drinking water feeder hoses                            | 57 |
|     | - Gas hoses according to DIN 3384                        | 58 |
|     | - HYDRA GS – gas hoses for buildings as per EN 15266     | 58 |
|     | - Gas hoses for household devices as per EN 14800        | 59 |
|     | - Equipment piping                                       | 61 |
|     | - Cooling ceiling hoses                                  | 62 |
|     | - Sprinkler mounting systems                             | 63 |
|     | - Heat exchangers                                        | 64 |

#### Flexible heat tracing system

Trace heating is used to achieve constant temperatures in product pipelines, distributors, fittings, containers, pipe bridges and safety showers and to avoid frost damage. The type of energy supply differentiates electrical and thermal trace heating.

The HYDRA trace heating system shown in fig. 3.1.1 uses water or process steam as the heat carrier medium. It is available for the nominal diameters DN 12 to DN 25 and consists of a flexible trace heating hose, an insulated supply hose as well as accessory and fixing components. Trace heating hoses are available as goods sold by the metre and can be cut to length on site. It is connected with removable stainless steel or brass screw connections. Trace heating hoses are attached to the pipeline with quick-installation clips or with metal strips (see fig. 3.1.1). Wall mounting is possible using screwed-in quick installation clips.



Fig. 3.1.1 HYDRA trace heating system

The advantages of the HYDRA trace heating system are:

- A simple and cost-effective installation without prior measurement of the pipeline and without welding or brazing work.
- Good adaptation to piping layout even with small bending radii,
- Minimal insulation costs via smaller moulded caps,
- Good heat transmission based on large corrugated surface and minimal wall thickness of the metal hose,
- High pressure, temperature, corrosion and aging resistance,
- Electrical conductivity, flame resistance and diffusion resistance.

#### 3.1 Industry

If cold water is used as a heat transfer medium, the HYDRA trace heating system can also be used for cooling, e.g. for engines or exhaust gas pipelines.

#### Insulating hose assemblies

Insulating hoses provides for the flexible connection of heating devices with heating baths, chemical reactors and distillation plants.

The HYDRA insulating hose shown in fig. 3.1.2 is temperature-resistant to 300 °C. The high insulation performance ensures an external temperature of 60 °C is not exceeded for media temperatures up to 200 °C and this makes it safe to handle. The HYDRA insulating hose is vacuum- and diffusion-resistant with a permissible operating pressure of 12 bar at 20 °C. A DN10 annularly corrugated hose is used to convey media. The insulation has several layers on top is a silicon rubber hose. On request an additional braid of heat resistant Polyamit can be mounted. The insulation is held in position and sealed at both ends with shrink hoses. All welded connections can be manufactured burr-free and seamless.

The HYDRA insulating hose is very easy to install based on its pliability and the different lengths available. The hose is connected with stainless steel union nuts. The standard lengths are listed in chapter 6.4.



Fig. 3.1.2 HYDRA insulating hose





#### **Double hose assemblies**

HYDRA double hose assemblies consist of two coaxial metal hoses of different diameters. They can be used as heating, cooling or insulating pipelines or as monitored safety element. The working medium is conveyed via the inner hose. The annulus formed between the inner and outer hoses serves to convey the heat carrier or act as insulation or a monitoring space.

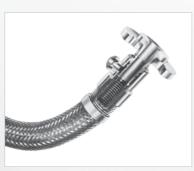
Double hose assemblies are used as heatable pipelines for conveying viscous or temperature-sensitive media in the chemical, petrochemical, pharmaceutical and food industries if insulating coatings are not sufficient to regulate the temperature or if restricted temperature tolerances have to be maintained. Double hose assemblies are used as a coolable element in compressor and engine construction for cooling air and for exhaust gases.

They are also used as insulating elements with the transmission of deep-frozen media, e.g. liquid gas in cryotechnology. The annulus between the inner and outer hose is evacuated.

If monitoring devices such as manometers or leak detectors are connected to the annulus the double hose assembly can also be used as a controllable safety element, e.g for conveying dangerous media.

#### 3.1 Industry

Figures 3.1.3 and 3.1.4 show a HYDRA double hose assembly. Stainless steel corrugated hoses with stainless steel braid are used for the inner and outer tube. Flanges at both ends of the pipeline act as a connection for the working medium. Screw connections, welding neck flanges, vacuum small flanges or cryovalves are attached for the input and output of the heating and cooling media.


HYDRA traced hose pipelines have a high angular and lateral flexibility. They are pressure resistant, vacuum-tight, temperature-resistant and corrosion-resistant. Temperatures of up to 400 °C can be used in the standard version and up to 550 °C in the special versions. They are available in nominal diameters DN 10 to DN 150 and nominal pressure levels PN 16 and PN 40. Further dimensions and version details can be found in the technical tables in chapter 6.5.

#### Hose assemblies for chemical substances

In addition to the standards DIN EN 14585-1 and DIN ISO 10380, DIN 2827 describes hose assemblies made of stainless steel for chemical substances. One significant factor in the standard is corrosion protection. Burr-free and seamless connection technology is prescribed for nominal diameters DN 10 to DN 100. It is designed to avoid a localised concentration of corrosive media and resulting crevice and/or pitting corrosion. Welding work is to be performed by welders, certified according to DIN EN 287-1. The welding processes must conform to the requirements of the standards DIN EN ISO 15614. In addition, DIN 2827 describes integrated hoses or round wire coils as additional outer protective devices for metal hoses.



Fig. 3.1.3 HYDRA double hose assembly



*Fig. 3.1.4 Cross-sectional view of a HYDRA double hose assembly.* 

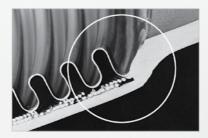



Fig. 3.1.5 Seamless and burr-free connection of a metal hose.



(HYDRA®)

#### 3.1 Industry

HYDRA annularly corrugated hoses can be produced from nominal diameter DN 6 as a special design in accordance with DIN 2827. The burr-free and seamless connection of braiding, annularly corrugated hose and end sleeves is shown in fig. 3.1.5. There is the option of fitting several protection devices according to DIN 2827 as shown in fig. 3.1.6.

The conveying of ammonia additionally demands meeting the safety requirements of TRD 451 and 452 i.e. the design pressure of the hose assembly must be bigger than PN 25 and flanges and sealings must be approved for ammonia. Such flanges are available on request.

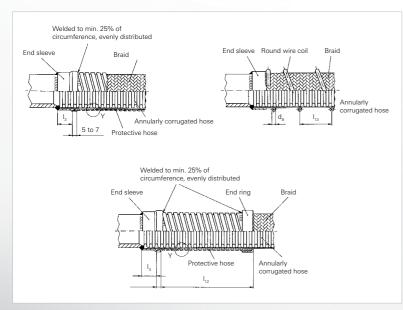



Fig. 3.1.6 Additional protection devices according to DIN 2827

#### 3.1 Industry

#### Hose assemblies for foodstuffs

Cleanliness and hygiene are significant requirements for plants and aggregates in the food industry. The production process is regularly interrupted for cleaning cycles (CIP Cleaning in Place) to guarantee this. Open, not undercut corrugation profiles with large radii at the inner and outer crest are required to enable the effective and fast cleaning of metal hoses. The American 3-A Sanitary Standards contain the requirements for crest radii for flexible elements.

The RS 341 model from the range of HYDRA annularly corrugated hoses is ideally suitable for use in the food industry due to its wide corrugation. It can be welded burr-free and seamlessly with connection fittings on request, e.g with screw connection for liquid food according to DIN 11851.

#### PTFE lined metal hoses

PTFE-lined pipelines are used in the chemical industry if the corrosion resistance of metal materials is no longer sufficient. In addition, PTFE-lined hose assemblies are well suited as supply and filling hoses due to their smooth inner surfaces.



Fig. 3.1.7 HYDRA hose assembly with PTFE lining

Fig. 3.1.7 shows a stripwound hose with integrated profile, which is fitted internally with a PTFE liner. Outer braiding absorbs the longitudinal force resulting from the internal pressure and provides protection in combination with the stripwound hose against external mechanical loads. Welding rings and swivelling flanges made of steel or stainless steel serve as connection fittings on both sides. The PTFE liner also protects the sealing surface of the welding rings.



(HYDRA)

#### 3.1 Industry

HYDRA hose assemblies lined with PTFE can be used in a temperature range of -40 °C to +230 °C. The standard dimensions are listed in the technical in chapter 6.5.

With the medium flow, electrostatic charges can occur on electrically non-conductive pipelines. Such charges can lead to the formation of sparks and possibly the ignition of gas and air mixtures. The PTFE lining must be able to conduct electricity in order to avoid charging. HYDRA - PTFE lined hose assemblies can be delivered with electrostatically conductive PTFE-lining on request. Adequate earthing is essential. Particular attention should be paid to the conductance of interference via electrical fields.

The PTFE lined metal hose is not suitable for the uncoupling of large vibration amplitudes.

#### Hose assemblies for presses

The manufacture of chipboard, MDF and OSB sheets and the surface coating of these sheets are completed at high temperature and high pressure. Multiple presses are used here with several sheets being processed over each other at a stroke.

Hot water, steam or thermal oil are used in the tempering of this process. They are fed to the individual layers of the press via metal hoses. The hoses compensate for the elevation movement of the press. They are installed in the U-bend configuration and are typically operated at 25 bar and 150 - 250  $^{\circ}$ C.

With a cycle time of several strokes per hour in three shift operation and a high availability of the machine, the press hoses have to bear several tens of thousands of load cycles per year. In order to ensure a smooth operation under these circumstances, the U-bend configuration should have adequate bending radius hose lengths and the pressure resistance of the hose assembly should not be fully utilised. Abrasion protection between the braiding and hose is advisable to minimise rubbing wear.

#### 3.1 Industry

Hydraulically produced HYDRA RS 430 annularly corrugated hoses with double braid can be used as press hoses. Fig. 3.1.8 shows an example application. They can be fitted with space-saving rectangular or normal flanges, e.g. according to DIN 1092.

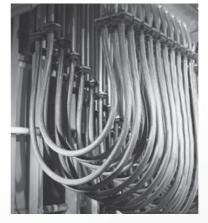



Fig. 3.1.8 Metal hoses in a multiple press.

#### High-pressure hoses for technical gases

Stainless steel corrugated hose assemblies are used to convey high-purity gases, technical gases under high pressure, dangerous or poisonous gases. Very high pressure is often used to achieve large volume flows and thereby short handling and filling times. The load configuration for metal hoses therefore encompasses a lot of pressure cycles in addition to frequent movements. In addition, a lot mounting and demounting leads to strain on the connection fittings.

HYDRA RS 531 DN 5 to DN 16 high-pressure hoses with double braid can be used for operating pressures up to 300 bar with these applications. Metal hoses for even higher operating pressure are currently being developed.



#### 3.1 Industry

Fig. 3.1.9 shows a HYDRA RS 531 hose assembly as gas bottle filling hose. It is also clear to see the arresting cable as an additional safety element that prevents the chopping around of the hose in the event of a failure of the hose.

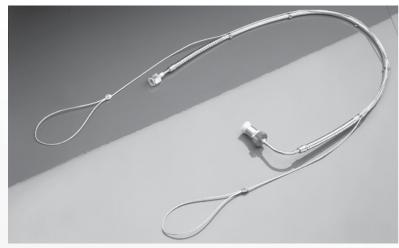



Fig. 3.1.9 HYDRA high-pressure hose for technical gases

The connections used for the individual gases are standardised according to DIN 477. In order to broadly exclude mistakes in filling and emptying, DIN 477 sets out for all flammable and easily ignited gases that the connections to the side connecting pieces of the gas bottle valve with left threads (LH) and for all other gases with right threads.

Table 3.1.1 names some of the most common gases and their allocation to the valve connections. In so far as gases other than those named in the table are to be filled, it is vital to check or find out about the suitability or the chemical stability of the filling hoses.

#### 3.1 Industry

| Connection<br>fitting type | Connection to lateral lugs                | Connection no. | Gases                                                                                                           |                                            | WAF |
|----------------------------|-------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----|
| -                          | d                                         | -              | -                                                                                                               |                                            | mm  |
| NR26S                      | W 21.80 x <sup>1</sup> / <sub>14</sub> LH | 1              | Ethylene, butadiene,<br>butane, dimethyl<br>ether, ethane, illumi-<br>nating gas, methane,<br>propane, hydrogen | flammable, easily<br>ignited gases         | 30  |
|                            | W 21.80 x <sup>1</sup> / <sub>14</sub>    | 6              | Ammonia, argon,<br>helium, carbon dioxide<br>(carbonic acid)                                                    | non-combustible or<br>hard to ignite gases | 30  |
|                            | G 3⁄4                                     | 9              | Oxygen                                                                                                          |                                            | 32  |
|                            | W 24.32 x <sup>1</sup> / <sub>14</sub>    | 10             | Nitrogen                                                                                                        |                                            |     |

Table 3.1.1 Allocation to gas bottle valve connections according to DIN 4771

#### Lance hoses for steel plants

During steel production, the raw iron produced in the blast furnace is turned into steel in a converter. Thereby, with the basic oxygen steel process, oxygen is blown onto the molten metal via a water-cooled lance at regular intervals. This enables the combustion of excess carbon and part of the unwanted accompanying elements. This process is also called 'refining'. The required elevation movement of the lance over several metres in vertical and horizontal directions is made possible via metal hoses, which are installed in the 180° bend. Cooling water and oxygen are fed in via separate hose assemblies.

Based on the large diameters and the high operating pressures, a hydraulically produced annularly corrugated hose RS 430 with doubled, knurled braid is used for lance hoses. An external integrated hose can be used as a mechanical protection.

Oxygen lines are also equipped with an inner integrated hose to improve the flow pattern and reduction of pressure loss. All components coming into contact with oxygen must be made of stainless steel and be free of oil and grease.



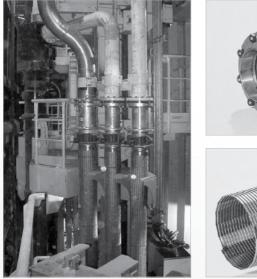



Fig. 3.1.10 Lance hoses for oxygen and cooling in the steel plant.



Fig 3.1.11 HYDRA annularly corrugated hose made of stainless steel with double braid and inner integrated hose as flexible oxygen feed for blow lance in steel plants.

#### Vibration absorbers

Vibration absorbers are used in supply lines in engines, pumps, cooling aggregates or air conditioning equipment to reduce the transfer of vibrations and muffle noises. One primary use is refrigeration engineering.

HYDRA vibration absorbers are made of bronze (DN 8 to DN 50) or stainless steel (DN 6 to DN 100). Better noise suppression is achieved with the bronze version.

#### 3.1 Industry



Fig. 3.1.12 HYDRA vibration absorber in use

The application of the vibration absorbers is shown in fig. 3.1.12. The correct installation is shown in fig. 3.1.13. The vibration direction must be perpendicular to the hose axis as braided hoses can only absorb movements in this direction. Multi-axis vibrations require the installation of 2 vibration absorbers. The hoses must be connected stress-free, flush and not pre-stressed. A fixed bearing is to be positioned directly behind the hose. The permissible amplitudes in constant mode are  $\pm 1$  mm, with switch on/off  $\pm 5$  mm.

The standard dimensions of the HYDRA vibration absorbers are listed in chapter 6.5. Alternatively, vibrations can also be absorbed with standard hoses in 90° bends. Further details can be found in chapter 4.6.

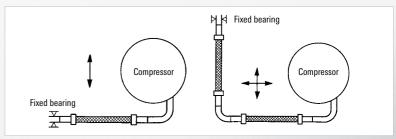



Fig. 3.1.13 Installation of HYDRA vibration absorber



#### Vacuum hoses

In vacuum technology, non-braided annularly corrugated hoses are typically used with standardised small flanges as quick-assembly hose assemblies for the connection of devices, pump, measuring equipment and test benches.

HYDRA annularly corrugated hoses without plastic seals can be heated up to 450 °C and can therefore be used in ultra high vacuum applications. If connections are used as small flanges, the hose assemblies can be used at pressures down to  $10^{.9}$  mbar. If an external supporting ring is used in addition, then the vacuum flanges are used for inside over pressure up to approx. 1.5 bar.

HYDRA vacuum hose assemblies are usually subjected to a helium leak test with a leakage rate of  $10^{-7}$  mbar I/s. Lower leakage rates can be confirmed on request.

#### **Miniature hoses**

HYDRA miniature hoses are used as protective hoses for instruments in minimally invasive surgery or for light conductors with laser or optoelectronic applications. Witzenmann is a leading manufacturer of miniature hoses with diameters of 1.5 mm to 6 mm. Both stripwound as well as pressure and diffusion-resistant annularly corrugated hoses are available. According to the particular application, the miniature hoses are coated, equipped with an inner liner or with special connections. HYDRA - miniature hoses are highly flexible, robust and resistant to aging.



Fig. 3.2.1 HYDRA miniature hoses

#### Solar hoses

Concentraded solar power plants with parabolic reflectors are today's most powerful plants for solar-thermal energy production. Parabolic reflectors are used in this sort of power plant to focus sunlight on the collector pipes and thereby heat the heat transfer medium circulating in it. Heat transfer oil, but also water/steam and, in the future, molten salt are used as heat carriers.

Steam is produced via heat exchangers and fed to a conventional power station. Alternatively, the direct vaporisation of water can occur in the collector pipe. One significant advantage of solar thermal power stations compared with photovoltaics is the possibility of the intermediate storage of thermal energy in molten salt.



Fig. 3.3.1 Solar field of a concentraded solar power plant

Fig. 3.3.1 shows the parabolic reflectors in a power station. During operation, they must be continually adjusted to the position of the sun. In addition, there are large thermal expansions between day and night. These expansions and movements must be balanced out via joints or flexible elements in the piping. One possibility is the connection of the collector pipes of the parabolic reflectors with metal hoses to the collecting pipes. Such solar hoses are exposed to high stress through the high temperatures and pressures as well as the big movements. Therefore, special structures made of multi-wall corrugated hoses with robust braiding are needed. In general, abrasion protection between corrugated hose and braiding, thermal insulation and possibly an outer protective hose may also be required.



#### Combined heat and power units

Combined heat and power units supply decentralised heating and electricity provision to buildings in accordance with the principle of combined power and heat. A fixed combustion engine runs at a constant engine speed, ideally in constant mode, and drives a generator that produces electricity. The combined heat and power units are very efficient through the use of waste heat from the engine used to heat domestic water. Depending on the operating conditions, over 90% of the supplied energy can be used.

In particular, the operation-related vibrations of the combustion engine poses great demands on the in- and output pipelines. With combined heat and power units HYDRA metal hoses are particularly suitable for conveying gas and water. On the one hand, they serve to remedy assembly faults and, on the other hand, the absorption of vibrations. At the same time, it compensates for constant vibrations with almost constant, small amplitudes in fixed, normal operation as well as the intensive, self-motion with high amplitude produced on all sides when starting and stopping the combustion engine.

#### Flexible joints for solar panels

Solar collectors for providing hot water consist of individual solar panels, which have to be connected to each other and the piping of the solar equipment. These connections must be so flexible that they can balance out the different thermal expansion of the individual components. HYDRA metal hoses and HYDRA metal bellows are used depending on the application and nature of the solar equipment.

#### 3.3 Green energy

Fig. 3.3.2 shows HYDRA solar connectors for different uses such as depressurised systems and pressurised systems, large plants or individual panels. Common technical features of all flexible connections for solar collectors are:

- Operating temperatures from -20 to +200 °C,
- Compensation of movement in all directions (axial, lateral and angular), where 10,000 load cycles have to be handled as a rule,
- A minimum number of sealing points,
- A non-brazed connection between the flexible component and a standard copper pipe.

HYDRA bellows and hoses are designed as pre-finished flexible connections for solar collectors and thereby enable quick and simple assembly without special previous knowledge.



Fig. 3.3.2 HYDRA metal bellows and hoses for flexible connections of solar collectors.



#### 3.4 Heating and Ventilation

#### Hoses for kitchens and bathrooms

Metal hoses are in everyday use as shower hoses in kitchens and bathrooms. Under the brand name ASPOR, Witzenmann produces nickel-plated and chromium-plated shower hoses and accessories. ASPOR hoses are designed for professional everyday use at operating temperatures up to 70 °C. They can be used for drinking water, are flexible, resistant to torsion, tension-proof in axial direction and have a high transverse compression strength. ASPOR hoses are approved according to:



The ASPOR design line (fig. 3.4.1) is an eye catcher for the bathroom and kitchen with its square or triangular shower hoses.



Fig. 3.4.1 ASPOR design line

The kitchen shower head type GB 1 (fig. 3.4.2) is used in shower head systems in commercial kitchens in restaurants, canteens, clinics etc. The maximum permissible operating pressure is 16 bar, the hose can be used for drinking water and is temperature-resistant up to 90 °C. An external feature is the stable protective integrated hose made of stainless steel 1.4301. The inner hose is made of butyl rubber and is KTW approved. It is connected on both sides via chromium-plated G 1/2" brass union nuts.



Fig. 3.4.2 Kitchen shower head type GB 1

#### Drinking water feed pipes

Drinking water feed pipes are used in domestic premises and in the catering trade for the connecting washing machines and dishwashers, fridges with ice cube facility, steam cookers as well as coffee and espresso machines. Fig. 3.4.3 shows HYDRA drinking water feed pipes of the HY line with different connection fittings. The structure of these hoses a pressure-tight annularly corrugated hose inside and an integrated hose as mechanical protection, is represented in fig. 3.4.4. Based on the hose diameter and corrugated profile, a turbulent flow develops in the annularly corrugated hose. This significantly reduces the deposits of lime or bacteria and also has a cleaning effect.

HYDRA drinking water feed pipes are supplied with the standardised connection fittings with G 3/4" threads. They are DVGW-approved for drinking water use according to VP 543 as well as according to KTW for flat sealings.

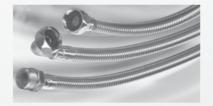



Fig. 3.4.3 HYDRA drinking water feed pipes



Fig. 3.4.4 structural design of HYDRA drinking water feed pipes



#### Gas hoses according to DIN 3384

Industrial gas consumer units may be connected with hose assemblies made of stainless steel in accordance with DIN 3384. The nominal diameter of the hose assemblies must not exceed DN 300 and operating pressure PN 16. Pipelines must not be laid in the ground. The materials, design, factory tests and approvals for gas hose assemblies are described in DIN 3384.

HYDRA – annularly corrugated hoses type RS 331 L00 and L12 in the nominal diameters DN 6 to DN 150, RS321 L00 and L12 to DN 50 and RS 341 L00 and L12 to DN 100 are approved by the DVGW as gas hose assemblies. The hose assemblies LA230 with threaded connections according to DIN EN 10226-1, LA201 with flanges according to DIN EN 1092-1 and LA241 with welding ends are available as standard. In addition, HYDRA annularly corrugated hoses with other fittings, permitted according to DIN 3384, can be used at any required length.

#### HYDRA GS - Gas hoses for buildings as per EN 15266

As long as the working pressure does not exceeds 0.5 bar, gas installations in buildings can be completed quickly and cheaply with non-rusting pliable corrugated pipe sets according to EN 15266. The HYDRA GS installation system consists of a coated annularly corrugated hose based on RS 351 with appropriate self-assembly connectors and installation accessories. The system also includes a tool box with the separating and assembly tools shown in fig. 3.4.5 on the left for cutting the pipeline to length and for assembling the connectors.

One advantage of the HYDRA GS system is the minimal installation costs. The gas pipeline is available as rolled goods and is cut to length on site. The pipework system can be adjusted to the structural circumstances by bending by hand. The fittings are mounted within seconds using the assembly tool.

3.4 Heating and Ventilation

HYDRA GS is available in the nominal diameters DN 16 to DN 32 and is a DVGWapproved gas installation system.




Fig. 3.4.5 HYDRA GS gas installation system, tools on the left and installation of a threaded nipple on the right.

#### Gas hoses for domestic appliances according to EN 14800

Metal hose assemblies can be used to connect household appliances such as gas stoves, terrace heaters or terrace barbecues inside and outside the property if the gas pressure is less than 0.5 bar. EN 14800 sets out the requirements for usability, materials and test procedure for gas hoses for connecting gas-powered household appliances. In the future, it will replace the different country-specific standards in Europe and will lead to a uniform safety standard.



The gas hoses in the HYDRAGAS GA 7xx line were developed based on the requirements of EN 14800. Fig. 3.4.6 shows its three-level structure: an inner, annularly corrugated hose provides the gas supply and leak tightness, stainless steel braiding absorbs mechanical loads, an easy-clean external PVC coating provides protection against dirt and aggressive household cleaning agents. The annularly corrugated hose, braiding and connectors are welded together. The PVC coating is pressed onto the connection fittings with stainless steel end sleeves and are slip-resistant and sealed against moisture at connection fittings.



Fig. 3.4.6 Three-level structure of HYDRAGAS GA 7xx gas hoses

The colour of the PVC coating denotes the type of gas and the country where it is used. The connection fittings are suitable for country-specific, common oven connections and gas fittings and enable trouble-free mounting of the gas hose. The minimum permissible bending radius is 40 mm.

All the gas hoses in the HYDRAGAS GA 7xx line have a CE approval, according to DIN EN 14800. The performance data is regularly checked in component tests. The labelling of the end sleeves enables clear traceability and batch assignment.

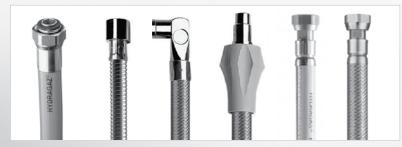



Fig. 3.4.7 Different country-specific versions of HYDRAGAS GA 7xx

#### **Equipment piping**

Semi-flexible, annularly corrugated hoses with a flat profile are used for costeffective pipework in charging pumps, boilers, expansion vessels, stratified tanks or gas appliances. A single bend of the hose is often required here to create the desired installation configuration. The semi-flexible hose is reshaped and fixed in the set position when bent. Further advantages of the flat profile include low costs and relatively small pressure loss. Fig. 3.4.8 shows a semi-flexible annularly corrugated hose in bent position; fig. 3.4.9 shows a boiler as a sample installation.

HYDRA HX 441 and IX 331 annularly corrugated hoses are ideally suited to equipment pipework. The easily-pliable HX 441 is ideal for narrow bending radii and multiple bending, the semi-flexible IX 331 with patented corrugation shape has a very high flexural stiffness and therefore remains reliably in its bent position. The hoses are available as goods sold by the metre or as pre-bent pipelines ex works. Insulation is provided with PE or EPDM over the whole length of the hose. The semi-flexible pipework of the gas installations must also conform with the requirements of DIN EN 15266.



Fig. 3.4.8 Semi-flexible annularly corrugated hose in bent position



Fig. 3.4.9 Sample installation of device pipework with flexible annularly corrugated hoses



#### **Cooling ceiling hoses**

Cooling ceilings are used for air conditioning in buildings using cold water. They are made up of individual panels, which can be removed for repair and maintenance work. Fig 3.4.10 shows an exposed cooling ceiling. The cooling ceiling hoses used to supply water to the panels can clearly be seen.

HYDRA annularly corrugated hoses RS 321, RS 331 or RS 341 can be used as cooling ceiling hoses, regardless of the mounting situation or required bending radii. Standard versions are hose assemblies with double-sided flat-sealing hose rims, brass union nuts, asbestos-free sealing and sealed plug-in connector. Alternatively, screw-in components with brass internal and external threads or screw-in parts with brass supports (suitable for plug-in connector DN 10 / DN 12) are also available.



Fig 3.4.10 Exposed cooling ceiling with flexible connecting lines

HYDRA cooling ceiling hoses enable cost-effective and flexible mounting without brazing or welding. The line is supplied as a set, i.e. subsequent sealing of the connectors is not required. The high lateral pressure of the annularly corrugated hose and the patented, extra buckle-resistant hose ends prevent constriction of the cross-section and increase in flow resistance on bending. HYDRA cooling ceiling hoses are resistant to diffusion and thus guarantee trouble-free operation of the control devices. Corrosion caused by oxygen diffusion or accumulation of mud on the line is also avoided.

#### 3.4 Heating and Ventilation

#### Sprinkler mounting systems

The exact mounting of sprinklers in suspended ceiling systems using conventional mounting methods is very laborious: the traditional "lining up" using rigid piping as per the predefined ceiling plan is very time consuming and costly. The use of the HYDRA sprinkler mounting system with specially-designed stainless steel hoses significantly reduces installation work, as the flexibility of the hose enables the sprinkler to be installed in any position within the circular area determined by the hose length. The supplied mounting brackets allow reliable and secure attachment of the sprinkler hose to the substructure of the appropriate ceiling system. The use of a HYDRA sprinkler mounting system instead of fixed pipework reduces installation time by up to 80 %.



Fig. 3.4.11 HYDRA sprinkler mounting system

Standard HYDRA sprinkler brackets are based on the use of a square pipe  $15 \times 15$  mm as a transverse beam. The HYDRA sprinkler hose is secured with a sprinkler clamp variably positioned to the square pipe as shown in fig. 3.4.12. Various sprinkler mounting systems are available, adapted to the individual construction of the suspended ceiling.







Fig. 3.4.12 Mounting a HYDRA sprinkler hose





HYDRA sprinkler mounting systems are recognised by the VdS (Association of Damage Insurers of Germany) and are approved for use in sprinkler wet systems with sprinklers R 3/8" (K 57), R 1/2" (K 80) and R 3/4" (K 115) in the pressure level PN 16. The approval is only valid in connection with the ceiling systems specified in our technical product descriptions. FM-approved sprinkler mounting systems are available in the pressure level PN 12 (175 psi) for sprinklers R 1/2" (K80) and R 3/4" (K 115). The sprinkler mounting systems also have CNPP (France) and CNBOP (Poland) approvals.

#### Heat exchangers

Heat exchangers with corrugated pipes offer several advantages compared with traditional straight-tube heat exchangers:

- The large surface of the corrugated metal hose enables good heat transmission,
- Combined with the ribbed structure, it promotes condensation, e.g. for systems with condensing boiler technology,
- The turbulent flow increases heat transmission and reduces the build-up of lime deposits,
- The double-curved shell structure enables compact and light design.

This means that the efficiency level of a compact heat exchanger with corrugated pipes for special applications may be greater than a comparable straight-tube heat exchanger. Typical fields of compact heat exchangers are the heating of drinking, service or swimming pool water, temperature control of circulating water, system separation in underfloor heating or exhaust gas cooling and condensation.

Heat exchangers with stainless steel corrugated pipes can be used at a wide range of temperatures. It ranges from 90 °C for swimming pool heat exchangers to over 1000 °C as a primary heat exchanger in hot working areas. Such heat exchangers also have to be resistant to temperature shocks.

As a system producer, Witzenmann offers heat exchangers with customised housings.

#### 3.4 Heating and Ventilation

Housings and heat exchanger coils are matched to achieve optimum efficiency of the heat exchanger. Figures 3.4.13 and 3.4.14 show sample models.



Fig. 3.4.13 Swimming pool heat exchanger with plastic housing



Fig. 3.4.14 Compact heat exchanger with corrugated pipe coil (left) and corrugated pipe bundle (right).

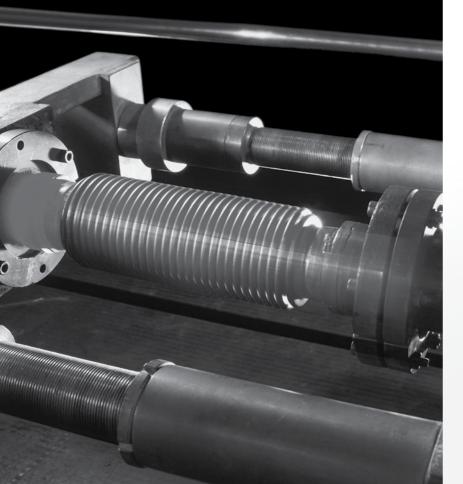

In addition, Witzenmann also produces a stratified tank coil shown in fig. 3.4.15. They have a patented bracket system for self-supporting installation. Stratified tank coils are available as complete systems with connectors in a range of sizes.



Fig. 3.4.15 HYDRA stratified tank coil



## DESIGN, CALCULATION AND INSTALLATION FOR CORRUGATED HOSES



#### 4. Design, calculation and installation for corrugated hoses

| 4.1 | Pressure resistance and service life                    | 68  |
|-----|---------------------------------------------------------|-----|
| 4.2 | Pressure loss and flow-induced vibrations               | 76  |
| 4.3 | Absorption of movements                                 | 87  |
| 4.4 | Absorption of thermal expansions                        | 91  |
| 4.5 | Compensation of mounting tolerances and pipework offset | 97  |
| 4.6 | Absorption of vibrations                                | 98  |
| 4.7 | Installation and assembly instructions                  | 100 |

The main requirements for corrugated hoses are

(1) Media and corrosion resistance,

- (2) Temperature resistance,
- (3) Leak tightness,
- (4) Pressure resistance,
- (5) Flexibility and service life.

Corrosion and temperature resistance can be achieved by selecting the appropriate materials. The permissible pressures at higher working temperatures are defined by reduction factors (cf. chapter 6.1). Tightness is guaranteed by the production process. The selection of a suitable hose design is decisive for the pressure resistance and service life and service life.

With non-braided hoses, the pressure resistance and service life can easily be forecast via parallel use of the calculation rules known for metal bellows on the corrugated structure of the hose. This particularly applies if the bending line of the hose is described, taking account of the internal pressure, in accordance with

$$w''''(x) + \frac{p \cdot A}{EI} w''(x) = 0$$
(4.1.1)

As the use of non-braided hoses is not the norm due to their limited pressure resistance and service life, we refer to further details in the standards EJMA 2009, EN 14917, the "Metal bellows handbook" as well as the publication "Design, service life and reliability of metal bellows for valve spindle sealing" (Armaturenwelt 2011, issues 2, 3 and 4).

The behaviour of braided hoses is determined via the interaction of corrugated hose and braiding. This is only analysed in part, meaning that the design of braided metal hoses is strongly based on an experimental approach. DIN EN ISO 10380 provides regulations for standardised experimental procedures. The bursting test and the durability test are critical for braided hoses.

#### 4.1 Pressure resistance and service life

#### Bursting of the hose

Failure modes in burst tests are the bursting of the hose under the braiding shown in figure 4.1.1 or the braiding failure through longitudinal forces represented in figures 4.1.2 and 4.1.3.



Fig. 4.1.1 Bursting of hose under the braiding



Fig. 4.1.2 Braiding failure and resulting ruptured hose



Fig, 4.1.3 Braiding failure at the interface to the end pants

The hose bursts under the braiding if the braiding is more strongly dimensioned than the annularly corrugated hose. The hose fails due to circumferential stress caused by the operating pressure and attenuated by the radial support of the braiding. The rupture of the hose is in an axial direction. A medium circumferential stress of  $\sigma_{um}$  can be used as an arithmetical failure criterion for the bursting of the annularly corrugated hose. The bursting safety of the annularly corrugated hose  $S_{BR}$  arises from the comparison of the mean circumferential stress  $\sigma_{um}$  with the tensile strength  $R_m(T)$  of the hose material at the working temperature.

$$S_{\text{BR}} = C_{\text{W}} \; \frac{R_{\text{m}}(T)}{\sigma_{\text{um}}}$$

(4.1.2)



#### 4.1 Pressure resistance and service life

The weld seam factor  $C_w$  takes account of the possible reduced strength of the longitudinal seam compared to the basic material of the outlet pipe.

A braiding failure occurs if the tensile stress  $\sigma_z$  in the individual wires exceeds the tensile strength of the wire material  $R_m(T)$ . Braiding failure is usually followed by a stretching and ultimate bursting of the annularly corrugated hose at the defective spot. The cracks are orientated to the peripheral direction.

The safety factor against braiding failure  $S_{BG}$  is

$$S_{BG} = \frac{R_m(T)}{\sigma_7}$$
(4.1.3)

If the tensile strength of the braiding wires is reduced by excessive heat input during the braiding process, a localised weak point appears on the hose and failure takes place as shown in figure 4.1.3 on the interface of the hose, braiding and endparts. The tensile strength of the braiding wire has to be reduced accordingly to enable the correct calculation of the bursting strength.

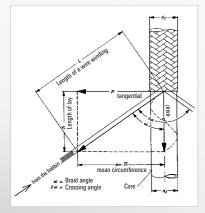



Fig. 4.1.4 Geometry of the hose braiding

#### 4.1 Pressure resistance and service life

The braiding is stressed in an axial direction by the pressure reacting-force of the hose. The braiding geometry detailed in figure 4.1.4 produces tensile stresses  $\sigma_z$  in the individual braiding wires

$$\sigma_{z} = \frac{F}{n_{K} \cdot n_{D} \cdot A_{D} \cdot \cos \alpha}$$
(4.1.4)

 $F = p \cdot A_{hvd}$ : pressure reacting-force

n<sub>d</sub>: number of wires per clapper

nk: number of clappers

 $\alpha$ : braiding angle opposite the vertical

 $A_{\rm D}$ : cross-sectional area of a braiding wire

 $\sigma_{z}$ : tensile stress in an individual braiding wire

Not all wires are uniformly loaded with multi-layered braiding made with a constant length of lay. Here the braiding angle increases from the inner to the outer braiding. Therefore, load capacity does not increase in proportion to the number of layers. According to DIN EN 10380 this increases the load capacity:

Double braiding to 1.8x and

Triple braiding to 2.6x of the value of the individual braiding

In practice, this estimation applies well to hoses of small nominal diameters. With larger hoses the effect is less pronounced. The equations 4.1.2 and 4.1.3 allow the forecasting of the failure mode of the hose assembly and a balanced arrangement of annularly corrugated hose and braiding with regard to bursting. DIN EN ISO 10380 requires a bursting strength S > 4, i.e.  $S_{BR} > 4$  and  $S_{BG} > 4$  for metal hoses. Due to the uncertainty of the strength values, the evidence of bursting strength must always be provided experimentally. If hoses are used at increased temperatures, the permissible pressure falls in accordance with the decrease in the stability characteristic values of the hose and braiding material. The appropriate reduction factors are listed in table 6.1.2 in chapter 6.1.

(HYDRA)

HYDRA

#### 4.1 Pressure resistance and service life

#### Service life in the U-bend test

The U-bend test is the standardised life cycle test for hose assemblies with small and medium nominal diameters (DN). Fig. 4.1.5 shows the theoretical installation configuration. The significant test parameters are pressure (p), bending radius (r), elevation (y) and the flexible length of the hose  $(L_1)$ . It is defined according to

$$L_1 = 4 \times R + x$$
 (4.1.5)

whereby x is four times greater than the nominal diameter, but at least 125 mm. The corresponding bending radii are listed in table 4.1.1. With these bending radii, the HYDRA hose assemblies listed in chapter 6.3 achieve a service life of 10,000 alternations of load in a U-bend test, in accordance with DIN EN ISO 10380.

In the practical tests, the bending line differs from the U shape with parallel flanks. Fig. 4.1.6 shows an example of the self-setting horseshoe-shaped hose configuration. This variation from the U shape increases with rising internal pressure and falling flexural stiffness of the hose and leads to an increased load and near the fixing points.

Therefore, fatigue fractures of the hose and/or braiding on or near the fixing points are one of the typical failure modes in the U-bend test.

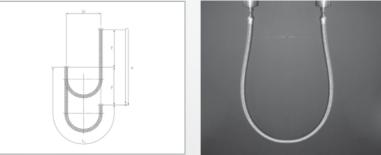



Fig. 4.1.5 U-bend test, theoretical bending line.



Fig 4.1.6 Bend curve in the U-bend test under internal pressure.

| Nominal diameter DN | Nominal bending radius $r_{\scriptscriptstyle N}$ [mm] for hoses with high flexibility (type 1) | Nominal bending radius $r_{\rm N}  [mm]$ for hoses with normal flexibility (type 2) |
|---------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 4                   | 100                                                                                             | 120                                                                                 |
| 6                   | 110                                                                                             | 140                                                                                 |
| 8                   | 130                                                                                             | 165                                                                                 |
| 10                  | 150                                                                                             | 190                                                                                 |
| 12                  | 165                                                                                             | 210                                                                                 |
| 15/16               | 195                                                                                             | 250                                                                                 |
| 20                  | 225                                                                                             | 285                                                                                 |
| 25                  | 260                                                                                             | 325                                                                                 |
| 32                  | 300                                                                                             | 380                                                                                 |
| 40                  | 340                                                                                             | 430                                                                                 |
| 50                  | 390                                                                                             | 490                                                                                 |
| 65                  | 460                                                                                             | 580                                                                                 |
| 80                  | 660                                                                                             | 800                                                                                 |
| 100                 | 750                                                                                             | 1000                                                                                |
| 125                 | 1000                                                                                            | 1250                                                                                |
| 150                 | 1250                                                                                            | 1550                                                                                |
| 200                 | 1600                                                                                            | 2000                                                                                |

4.1 Pressure resistance and service life

2400 Table 4.1.1 Bending radii for the U-bend test according to DIN EN ISO 10380:2013

2000

Other possible failure modes include rubbing wear of the hose through the relative movement of hose and braiding or a localised backing of the hose in the transitional area between the bent and straight sections. Localised buckling occurs most often with pliable hoses with a large nominal diameter.

1301uk/8/05/20/pdf





250

300

2500

3000

### 4.1 Pressure resistance and service life

The magnitude and expression of the rubbing wear shown in fig. 4.1.7 depend strongly on the pressure, braid structure and presence of lubrication or of abrasion protection. A guide value for tests with nominal pressure is that, with load cycles endured under 10,000 alternations of load, the fatigue of hose or braid and, with load cycles endured over 200,000 alternations of load, the rubbing wear of the hose determine failure. Inbetween both sorts of failure occur.

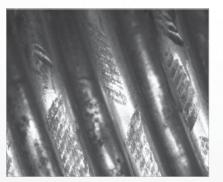



Fig. 4.1.7 Braid friction marks on an annularly corrugated hose

Due to the many different methods of failure, it is impossible to produce an arithmetical service life prediction for braided corrugated hoses. The comparison of the maximum curves of the bending line can be used in tests and use to provide a very rough evaluation of the behaviour of a hose in an installation configuration deviating from the test.

#### 4.1 Pressure resistance and service life

An increase in the bending radius, an extension of the hose lenght and reduction in pressure can generally be seen as a way to extend the life-time. One example of this is: Fig. 4.1.8 test results of the HYDRA annularly corrugated hose, RS 331 S12 DN 25. With the same movement, the load cycles endured increases from 30,000 cycles at nominal pressure to up to several million load cycles with pressure-free operation.

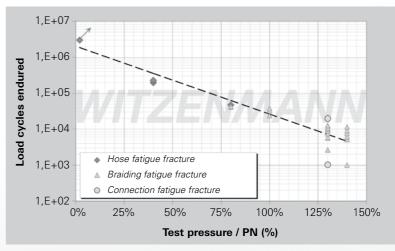



Fig. 4.1.8 Dependency on the load cycles endured in the U-bend elbow test on the relationship between test pressure and nominal pressure.



With the development of line systems for conveying liquid or gaseous media, pressure loss plays an important role in design. With metal hoses, there is always a greater pressure loss than in smooth pipelines at the same flow volumes and flow velocities, on account of the geometry of the corrugation.

The pressure loss is determined by the hose geometry, the flowing medium and the flow conditions. According to the Reynold's number

$$Re = \frac{c \cdot d_i}{v}$$
(4.2.1)

the schematically represented flow conditions in fig. 4.2.1 can occur in corrugated hoses:

- 1. The laminar zone a laminar flow forms in the cylindrical area of the hose, the corrugations are not covered by the flow
- 2. The zone of turbulence primary and secondary vortexes form in the corrugated spaces, but the central flow is not affected (see also fig. 4.2.2),
- 3. The high velocity zone the turbulence flags between the inner crests have a reciprocal effect on each other and they affect the central flow.

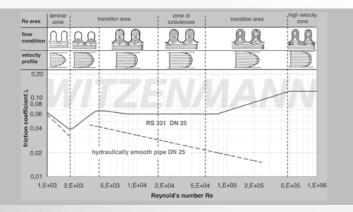



Fig. 4.2.1 Flow formation and coefficient of friction in the corrugated hose as function of the Reynold's number (schematic)



Fig. 4.2.2 Turbulent flow with undisturbed central flow as well as primary and secondary vortexes in the corrugation in an annularly corrugated hose.

In the first approximation, it can be assumed that the pressure loss in corrugated hoses with a turbulent flow is almost  $2\frac{1}{2}$ -times and, with a high-speed flow, is some  $5\frac{1}{2}$ -times as big as new, welded steel pipes. In order to compensate for the increased pressure loss, the inside diameter of the corrugated hose has to be 20 % or 40 % bigger than the hydraulically smooth pipe.

The pressure loss  $\Delta p$  can be calculated according to

$$\Delta \rho = \left(\lambda \frac{L_i}{d_i} + \zeta_b\right) \cdot \frac{\rho}{2} c^2$$
(4.2.2)

This involves:

- $\lambda$  = the coefficient of friction,
- $L_1$  = the corrugated hose length,
- $d_i$  = the inside diameter of the hose,
- $\rho$  = the density of the fluid and
- c = the flow velocity.





The coefficients of friction  $\lambda$  and the resistance coefficients  $\zeta$  for a 180° bend were determined experimentally at Witzenmann. For the most important hose types, they are represented as a function of the Reynold's number or as function of the relation of bending radius r to the inner diameter d<sub>i</sub> of the hose in figures 4.2.3 to 4.2.10.

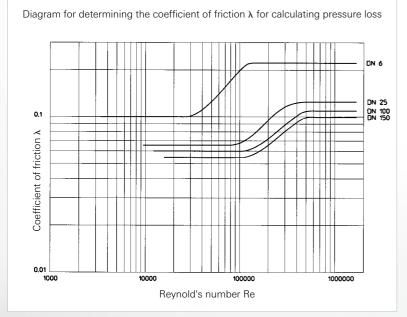



Fig. 4.2.3 Coefficient of friction  $\lambda$  for HYDRA metal hoses RS 331/330

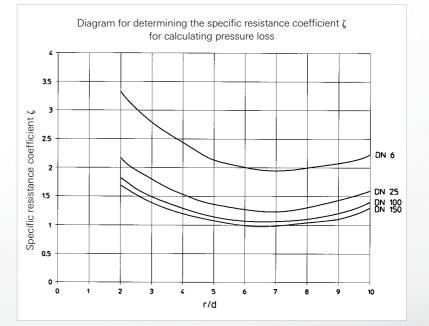



Fig. 4.2.4 Specific resistance coefficient ζ for HYDRA metal hoses RS 331/330



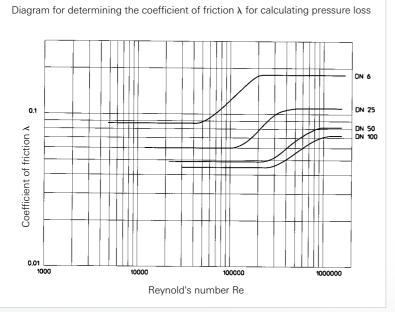



Fig. 4.2.5 Coefficient of friction  $\lambda$  for HYDRA metal hoses RS 321

## 4.2 Pressure loss and flow-induced vibrations



Fig. 4.2.6 Specific resistance coefficient ζ for HYDRA metal hoses RS 321



# Diagram for determining the coefficient of friction $\lambda$ for calculating pressure loss DN 6 DN 12 **DN 25** DN 50 +++0.01 1000 10000 100000 1000000 Reynold's number Re Fig. 4.2.7 Coefficient of friction $\lambda$ for HYDRA metal hoses RS 341

# 4.2 Pressure loss and flow-induced vibrations

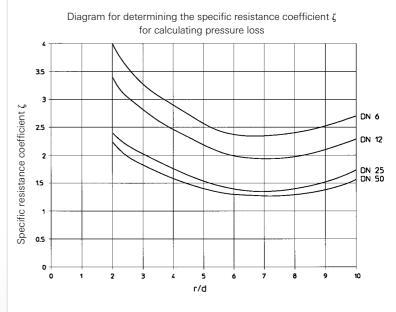
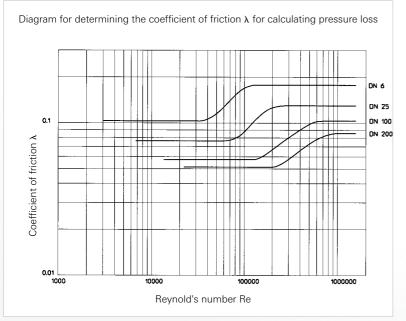



Fig. 4.2.8 Specific resistance coefficient ζ for HYDRA metal hoses RS 341


0.1

Coefficient of friction A

1301uk/8/05/20/pdf



# 4.2 Pressure loss and flow-induced vibrations



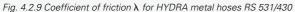





Fig. 4.2.10 Specific resistance coefficient  $\zeta$  for HYDRA metal hoses RS 531/430



The following example calculation demonstrates the determination of pressure loss:

# Medium:

Organic heat carrier Flow velocity: c = 1 m/sOperating temperature: t = 300 °C Thickness at operating temperature:  $\rho = 827 \text{ kg/m}^3$ Kinematic viscosity at operating temperature:  $\nu = 0.5 \cdot 10^{-6} \text{ m}^2/\text{s}$ 

# Installation conditions:

Hose type: RS 331 DN25 Hose inner diameter: di = 25.5 mm Hose length:  $I_f = 1300 \text{ mm}$ Deflection angle:  $\alpha = 90^{\circ}$ Bending radius: r = 260 mm

The pressure loss in Pa is sought.

# Solution:

1. Determination of the Reynold's number: Re =  $\frac{c \cdot d_i}{v}$  = 51000

2. Reading off of coefficient of friction  $\lambda = 0.067$  and the resistance coefficient  $\zeta = 1.6$  from the figures 4.2.3 and 4.2.4

3. Calculation of the resistance coefficient: 
$$\zeta_{\rm b} = \zeta \frac{\alpha}{180^{\circ}} = 0.8$$

4. Calculation of pressure loss: 
$$p = \left(\lambda \frac{l_f}{d_i} + \zeta_b\right) \cdot \frac{p}{2}c^2 = 1743$$
 Pascal

The interaction of the flowing medium with the hose corrugations can cause the annularly corrugated hose to resonate in an axial direction. These vibrations are audible and critical if a natural frequency of the hose is excited by an unfavourable combination of circumstances of flow velocity, hose length and elasticity. This is particularly likely with long and thin hoses with flow velocities far below the critical value in DIN EN ISO 10380 of 5 m/s

Although the vibration amplitudes are only a few um per corrugation, such a vibration load can also cause the hose to fail due to the high frequencies and the associated large load cycles. The reason for the failure is generally a fatigue fracture on the outer crest.

# 4.3 Absorption of elevation movements

The formulas, described in chapters 4.3 to 4.6 for calculating the hose length required for the absorption of movements, each refer to the corresponding installation diagrams. They must reflect the installation and the movements exactly. If the installation diagram varies slightly from the actual installation, e.g. opposite direction of movement at the 90° bend, the calculation can usually be corrected easily, for example by interchanging the start and end point of the calculation.

# **U-bend configuration**

Metal hose assemblies are best installed in the U-bend configuration to absorb larger elevation movements. Vertical (figures 4.3.1 and 4.3.2) and/or horizontal movements (fig. 4.3.3) can be absorbed at the level of the U-bend configuration. Movements vertical to the level of the U-bend configuration are not permitted. The resulting torsion would lead to a quick failure of the hose assembly at the clip positions. The hose assembly should preferably be installed vertically, as horizontal installation in most cases requires bracing to prevent sagging. Depending on the installation form, the required nominal length is calculated with one of the equations 4.3.1, 4.3.4 or 4.3.7. An extension in length compared with the standard DIN EN ISO 10380 to reduce the bending stress at the connection fittings has already been taken into account. The fixed side of the hose assembly bend should be in the middle of the elevation movement. A longer length of hose assembly should be selected for asymmetrical installation. The load cycles endured are dependent on the direction of movement, the bending radius and the operating pressure of the hose assembly. With an elevation movement parallel to the sides of the U-bend configuration, the HYDRA hose assemblies, with the nominal bending radii ( $r = r_N$ ) and nominal pressures listed in table 4.1.1, achieve 10000 alternations of load, in accordance with DIN EN ISO 10380.

The installation of a U-bend configuration is not suitable for high-frequency loads.



# 4.3 Absorption of elevation movements

# Movement parallel to the flanks of the U-bend configuration

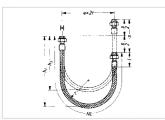



Fig. 4.3.1 Vertical absorption of movements in the vertical U-bend configuration

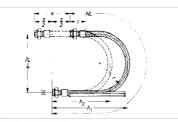



Fig. 4.3.2 Horizontal absorption of movements in horizontal U-bend configuration

Nominal length of hose:

$$\mathsf{NL} = 4 \cdot \mathsf{r} + \frac{\mathsf{s}}{2} + 2 \cdot \mathsf{I}$$

Maximum height of U-bend configuration:

$$h_1 = \left(3 - \frac{\pi}{2}\right) \cdot r + \frac{s}{2} + l = 1.43 \cdot r + \frac{s}{2} + l$$

Minimum height of U-bend configuration:

$$h_2 = \left(3 - \frac{\pi}{2}\right) \cdot r + l = 1.43 \cdot r + l$$

(4.3.1)

(4.3.2)

(4.3.3)

Movement perpendicular to the sides of the U-bend configuration

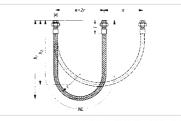



Fig. 4.3.3 Horizontal absorption of movements in vertical U-bend configuration

| Nominal length of hose:                                                                                       | (4.3.4) |
|---------------------------------------------------------------------------------------------------------------|---------|
| NL = $4 \cdot r + \frac{\pi}{2} \cdot s + 2 \cdot l = 4 \cdot r + 1.57 \cdot s + 2 \cdot l$                   |         |
| Maximum height of the U-bend configuration:                                                                   | (4.3.5) |
| $h_1 = \left(3 - \frac{\pi}{2}\right) \cdot r + \frac{\pi}{2} \cdot s + l = 1.43 \cdot r + 0.785 \cdot s + l$ |         |
| Minimum height of U-bend configuration:                                                                       | (4.3.6) |
| $h_1 = \left(3 - \frac{\pi}{2}\right) \cdot r + \frac{s}{2} + l = 1.43 \cdot r + 0.5 \cdot s + l$             |         |



#### 4.3 Absorption of elevation movements

#### **Combined movement**

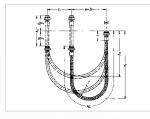



Fig. 4.3.4 Horizontal and vertical absorption of movements in vertical U-bend configuration

Nominal length of hose:

 $NL = 4 \cdot r + \frac{\pi}{2} \cdot s_1 + \frac{s_2}{2} + 2 \cdot I = 4 \cdot r + 1.57 \cdot s_1 + 0.5 \cdot s_2 + 2 \cdot I$ 

Maximum height of U-bend:

$$h_{1} = \left(3 - \frac{\pi}{2}\right) \cdot r + \frac{\pi}{4} \cdot s_{1} + \frac{s_{2}}{2} + I = 1.43 \cdot r + 0.785 \cdot s_{1} + 0.5 \cdot s_{2} + I$$

Minimum height of the U-bend:

$$h_1 = \left(3 - \frac{\pi}{2}\right) \cdot r + \frac{s_1}{2} + l = 1.43 \cdot r + 0.5 \cdot s_1 + l$$

The following example shows the use of the equations 4.3.1 to 4.3.9: A corrugated hose of type RS 331 L12, DN 25, with a double-sided screw connection and conical seal of the type QB02S, is to be used for horizontal absorption of movements in a vertical U-bend configuration. The nominal length of the hose assembly is demanded:

The dimensions are:
$$NL = 4 \cdot r + \frac{s}{2} + 2 \cdot I$$
Bending radius:  $r = 190$  mm, $NL =$ Total stroke:  $s = 320$  mm, $NL =$ Length of the connectors:  $I = 88$  mm $4 \cdot 190$  mm +  $0.5 \cdot 320$  mm +  $2 \cdot 88$  mmThe nominal length is determined

The nominal length is determined according to GI. 4.3.1:

NL = 1096 mm ≈ 1100 mm

# 4.4 Absorption of thermal expansion

Metal hoses can be used to compensate for thermal expansion. The selected form of installation depends on the size of the thermal expansion to be absorbed and on the space available at the place of installation. Preferred installation positions are the installation in the 90° bend shown in the figures 4.4.2 and described in 4.4.3, with restrictions also the lateral installation shown in figure 4.4.1. Due to the comparatively infrequent occurrence of thermal expansion, the 180° bend (U-bend configuration) is rarely used here.

Irrespective of the installation form, the fixed points and pipe guides should be attached directly to the hose line ends. With the compensation for thermal expansion, a service life of 1000 load cycles (20 years operation, weekly switching on and off of the plant) can generally be assumed. The installation forms shown here are not suitable for a highly frequent load.

### Lateral expansion compensation

Metal hose assemblies can absorb smaller expansions at right angles to their axis. For reasons of symmetry, the hose assembly should be pre-stressed by half of the occurring expansion ( $\frac{1}{2}$  s).

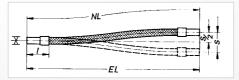



Fig. 4.4.1 Lateral absorption of movements using a hose assembly

The length of hose assemblies must be correctly measured. Too short a nominal length would lead to excessive tensile forces in the end positions of the movement and thereby reduce the service life of a hose assembly. The nominal length can be calculated according to the following formulas:

$$NL = \sqrt{(10 \cdot r_{N} \cdot s)} + 2 \cdot I$$
 (4.4.1 a)

$$NL = 3 \cdot s + 2 \cdot I$$
 (4.4.1 b)

90 WITZENMANN

1301uk/8/05/20/pdf



(4.3.7)

(4.3.8)

(4.3.9)



The larger value is to be used. The value from table 4.1.1 or from chapter 6.3 is to be used here for the nominal bending radius  $r_N$ . In order to limit the tensile load in the end positions, the installation length of the hose assembly must be approx. 0.5% shorter than the nominal length:

$$\mathsf{EL} \approx 0.995 \cdot \mathsf{NL} \tag{4.4.2}$$

Too short an installation length is harmful as the wire netting can lift up from the middle of the hose. This can lead to local buckling or reduction of the pressure resistance of the hose assembly.

HYDRA metal hose assemblies (up to DN 100) can be installed laterally with a small movement frequency for an absorption of alternating movements up to

max.  $\frac{s}{2} = 100$  mm.

# Absorption of expansion in 90° bend

Even in piping, the installation of the hose assembly involves practical use of 90° angular offsets, such as corners or floors. The expansion direction and hose bend must be on one level to avoid torsional stress. With one-sided expansion reception, the pipe to be compensated should be run in the direction of the axis so that there is no sideways movement. A (light) fixed point is to be allocated to the conveying pipeline immediately at the end of the hose assembly. If expansion is to be absorbed from two directions, pipe guides have to be attached to both hose assembly ends to guarantee that the expansions to be absorbed run at right angles to each other.

For reasons of symmetry, the hose assembly should be pre-stressed with half of the expansion to be absorbed ( $\frac{1}{2}$  s).

The determination of the nominal length of the hose assembly for installation in the 90° bend requires the bending angle  $\alpha$  to be identified first. The linear simplified equation for that is

$$\alpha = \arccos\left(1 - \frac{s}{2r}\right) \tag{4.4.3}$$

# 4.4 Absorption of thermal expansion

The actual angles  $\alpha$  are somewhat smaller and can be read as a function of s/r in the table 4.4.1. The bending angle must not exceed 60° with one-sided expansion absorption and 45° with double-sided expansion absorption. If these critical bending angles are reached, the bending radius has to be increased and the calculation repeated.

One-sided expansion absorption in 90° bend

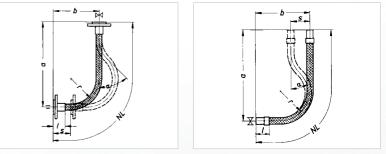



Fig. 4.4.2 One-sided absorption of movements using a hose assembly in the 90° bend

With the bending angle  $\alpha$ , the one-sided expansion reception shown in fig. 4.4.2. produces the nominal length:

$$NL = 2 \cdot r \cdot \alpha + \frac{\pi}{2} \cdot r + 2 \cdot I = 0.035 \cdot r \cdot \alpha \, [^{\circ}] + 1.57 \cdot r + 2 \cdot I \tag{4.4.4}$$

and the installation dimensions:

$$a = r \cdot (1 + 2 \cdot \sin \alpha) + I \tag{4.4.5}$$

$$b = r \cdot (1 + 2 \cdot \alpha - \sin \alpha) + l = r \cdot (1 + 0.035 \cdot \alpha [^{\circ}] - 2 \cdot \sin \alpha) + l$$
(4.4.6)

92 WITZENMANN

1301uk/8/05/20/pdf



## Two-sided expansion absorption in 90° bend

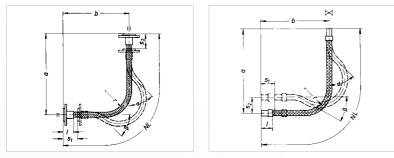



Fig. 4.4.3 Two-sided absorption of movements using a hose assembly in the 90° bend

The double-sided movement absorption (fig. 4.4.3) applies in the same way:

$$NL = 2 \cdot r \cdot (\alpha + \beta) + \frac{\pi}{2} \cdot r + 2 \cdot I = 0.035 \cdot r \cdot (\alpha \, [^{\circ}] + \beta \, [^{\circ}]) + 1.57 \cdot r + 2 \cdot I$$
(4.4.7)

 $a = r \cdot (1 + 2 \cdot \sin \alpha + 2 \cdot \beta - 2 \cdot \sin \beta) + I = r \cdot (1 + 2 \cdot \sin \alpha + 0.035 \cdot \beta [°] - 2 \cdot \sin \beta) + I$  (4.4.8)

 $b = r \cdot (1 + 2 \cdot \sin \beta + 2 \cdot \alpha - 2 \cdot \sin \alpha) + I = r \cdot (1 + 2 \cdot \sin \beta + 0.035 \cdot \alpha [^{\circ}] - 2 \cdot \sin \alpha) + I$  (4.4.9)

# 4.4 Absorption of thermal expansion

# 0° - 30°

30° - 60°

| Bending<br>angle | Expansion co<br>Bendino | ompensation<br>1 radius | $=\frac{s}{r}$ | Bending<br>angle |        | ompensation<br>g radius | $=\frac{s}{r}$ |
|------------------|-------------------------|-------------------------|----------------|------------------|--------|-------------------------|----------------|
| Degree Min.      | 0'                      | 30'                     | 60'            | Degree Min.      | 0'     | 30'                     | 60'            |
| 0                | 0.0000                  | 0.0001                  | 0.0003         | 30               | 0.3151 | 0.3263                  | 0.3377         |
| 1                | 0.0003                  | 0.0007                  | 0.0012         | 31               | 0.3377 | 0.3493                  | 0.3611         |
| 2                | 0.0012                  | 0.0019                  | 0.0028         | 32               | 0.3611 | 0.3731                  | 0.3853         |
| 3                | 0.0028                  | 0.0038                  | 0.0050         | 33               | 0.3853 | 0.3977                  | 0.4104         |
| 4                | 0.0050                  | 0.0063                  | 0.0078         | 34               | 0.4104 | 0.4232                  | 0.4363         |
| 5                | 0.0078                  | 0.0095                  | 0.0113         | 35               | 0.4363 | 0.4495                  | 0.4630         |
| 6                | 0.0113                  | 0.0133                  | 0.0155         | 36               | 0.4630 | 0.4767                  | 0.4906         |
| 7                | 0.0155                  | 0.0179                  | 0.0204         | 37               | 0.4906 | 0.5048                  | 0.5191         |
| 8                | 0.0204                  | 0.0231                  | 0.0259         | 38               | 0.5191 | 0.5337                  | 0.5484         |
| 9                | 0.0259                  | 0.0289                  | 0.0322         | 39               | 0.5484 | 0.5634                  | 0.5786         |
| 10               | 0.0322                  | 0.0355                  | 0.0391         | 40               | 0.5786 | 0.5940                  | 0.6096         |
| 11               | 0.0391                  | 0.0428                  | 0.0468         | 41               | 0.6096 | 0.6255                  | 0.6415         |
| 12               | 0.0468                  | 0.0509                  | 0.0551         | 42               | 0.6415 | 0.6578                  | 0.6743         |
| 13               | 0.0551                  | 0.0596                  | 0.0643         | 43               | 0.6743 | 0.6910                  | 0.7079         |
| 14               | 0.0643                  | 0.0690                  | 0.0741         | 44               | 0.7079 | 0.7250                  | 0.7424         |
| 15               | 0.0741                  | 0.0793                  | 0.0847         | 45               | 0.7424 | 0.7599                  | 0.7777         |
| 16               | 0.0847                  | 0.0903                  | 0.0961         | 46               | 0.7777 | 0.7957                  | 0.8139         |
| 17               | 0.0961                  | 0.1020                  | 0.1082         | 47               | 0.8139 | 0.8323                  | 0.8510         |
| 18               | 0.1082                  | 0.1145                  | 0.1211         | 48               | 0.8510 | 0.8698                  | 0.8889         |
| 19               | 0.1211                  | 0.1278                  | 0.1347         | 49               | 0.8889 | 0.9082                  | 0.9277         |
| 20               | 0.1347                  | 0.1418                  | 0.1491         | 50               | 0.9277 | 0.9474                  | 0.9673         |
| 21               | 0.1491                  | 0.1567                  | 0.1644         | 51               | 0.9673 | 0.9874                  | 1.0078         |
| 22               | 0.1644                  | 0.1723                  | 0.1804         | 52               | 1.0078 | 1.0284                  | 1.0491         |
| 23               | 0.1804                  | 0.1887                  | 0.1972         | 53               | 1.0491 | 1.0701                  | 1.0914         |
| 24               | 0.1972                  | 0.2059                  | 0.2148         | 54               | 1.0914 | 1.1128                  | 1.1344         |
| 25               | 0.2148                  | 0.2239                  | 0.2332         | 55               | 1.1344 | 1.1563                  | 1.1783         |
| 26               | 0.2332                  | 0.2428                  | 0.2525         | 56               | 1.1783 | 1.2006                  | 1.2230         |
| 27               | 0.2525                  | 0.2624                  | 0.2725         | 57               | 1.2230 | 1.2457                  | 1.2686         |
| 28               | 0.2725                  | 0.2829                  | 0.2934         | 58               | 1.2686 | 1.2918                  | 1.3150         |
| 29               | 0.2934                  | 0.3042                  | 0.3151         | 59               | 1.3150 | 1.3386                  | 1.3623         |

Table 4.4.1 Determination of the bending angle for the calculation of 90° bends for absorbing expansion

(HYDRA)

(HYDRA®)

An annularly corrugated hose assembly, type RS 331 L12, DN 25 made of stainless steel with welding ends, type UA12S, on both sides and made of steel pipe should be installed in the 90° bend and take up thermal expansion from two directions. The following are given:

| Bending radius:         | r = 190 mm,             |
|-------------------------|-------------------------|
| Horizontal elevation:   | s <sub>1</sub> = 78 mm, |
| Vertical elevation:     | s_ = 48 mm,             |
| Length of welding ends: | l = 83 mm.              |

4.4 Absorption of thermal expansion

The bending angles can be seen in the table 4.4.1 with the values s1/r = 0.411 and s2/r = 0.252 The calculation according to Gl. 4.4.3 would lead to the somewhat greater angles given in brackets.

| Vertical bending angle:   | $\alpha = 34^{\circ} (37^{\circ})$ |
|---------------------------|------------------------------------|
| Horizontal bending angle: | $\beta=27^\circ~(29^\circ)$        |

The nominal length arises from Gl. 4.4.7:

NL =  $0.035 \frac{\text{rad}}{\circ} \cdot 190 \text{ mm} \cdot (34^{\circ} + 27^{\circ}) + 1.57 \cdot 190 \text{ mm} + 2 \cdot 83 \text{ mm} = 870 \text{ mm}$ 

The installation dimensions from the Gl. 4.4.8 and 4.4.9:

| a = 190 mm · | $(1 + 2 \sin 34^\circ + 0.035 \frac{\text{rad}}{\circ})$ | · 27° - 2 · sin 27° | + 83 mm = 492 mm |
|--------------|----------------------------------------------------------|---------------------|------------------|
| b = 190 mm · | $(1 + 2 \sin 27^\circ + 0.035 \frac{\text{rad}}{\circ})$ | · 34° - 2 · sin 34° | + 83 mm = 459 mm |

Metal hoses can be used for the static correction of mounting tolerances. In the case of parallel pipework offset, the S-shaped installation shown in fig. 4.5.1 is possible. The nominal and installation length of the hose assembly can be calculated from the size of the axis offset a, the permitted minimum bending radius r and the bending angle  $\alpha$ .

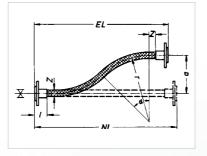



Fig. 4.5.1 S-shaped hose assembly installation for static correction of a parallel pipe misalignment

$$\alpha = \arccos\left(1 - \frac{a}{2 \cdot r}\right) \tag{4.5.1}$$

 $NL = 2 \cdot (r \cdot \alpha + | + z) = 0.035 \cdot r \cdot \alpha [^{\circ}] + 2 \cdot (|+z)$ (4.5.2)

 $\mathsf{EL} = 2 \cdot (\mathsf{r} \cdot \sin \alpha + \mathsf{I} + \mathsf{z}) \tag{4.5.3}$ 

Bending angles >  $60^{\circ}$  must not be exceeded. For bending angles >  $45^{\circ}$ , the following formulas apply to braided hoses:

 $NL = 2.680 \cdot a + 2 (I + z) \tag{4.5.4}$ 

and

 $\mathsf{EL} = 2.414 \cdot a + 2 (\mathsf{I} + \mathsf{z}) \tag{4.5.5}$ 

1301uk/8/05/20/pdf

(HYDRA®)

(HYDRA)

However, in order to relieve the stress on the hose, it is wise to avoid bending angles  $> 45^{\circ}$  or, alternatively, to use hose assemblies with a larger bending radius and greater length.

The neutral hose end z reduces the load of the hose on the interface to the end parts. When installing the hose assembly, it is therefore important to ensure that the hose assembly does not get bent directly behind the connection fittings. With larger hose dimensions or large offsets, it is helpful to bend the hose assembly into the required shape before mounting. The length of the neutral hose end (z) should be at least as large as the outside diameter of the hose assembly.

The Gl. 4.5.2 and 4.5.3 lead to very short hose lengths. The hose assemblies are therefore not suitable for absorbing recurring movements. If vibrations or movements have to be absorbed during operation, the installation forms specified in chap. 4.3, 4.4 or 4.6 are to be used.

# 4.6 Absorption of vibrations

Besides the HYDRA vibration absorbers described in chap. 3.1, standard hose assemblies mounted in a 90° bend (DN 10-100) or using a corner piece (DN 125-200) can be used to absorb vibrations and to dampen the resulting noise. A fixed point is to be positioned directly behind the hose. Fig. 4.6.1 shows the possible installation forms. Hoses mounted in the 90° bend can absorb vibrations in any direction in the hose level.

The installation dimensions for standard hoses for damping vibrations can be found in table 4.6.1. They are determined empirically and are selected in such a way that amplitudes of  $\pm 1$  mm in continuous operation and amplitudes of  $\pm 5$  mm for DN  $\leq 16$  as well as  $\pm 10$  mm for DN > 16 at switch on/off can be tolerated. Due to the small deflections, the radii for the 90° bend listed in table 4.6.1 are significantly smaller than the nominal radii for absorbing movement listed in chapter 6.3.

# 4.6 Absorption of vibrations

The relation between radius r, nominal length I and installation dimension a for the 90°-elbow is:

# $NL = 2.3 \cdot r + 2 \cdot I (4.6.1)$ and $a = 1.365 \cdot r + I (4.6.2)$

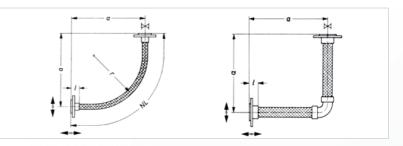



Fig. 4.6.1 Metal hoses for absorption of vibrations: annularly-corrugated hose in 90° bend (left), annularly-corrugated hose at 90° angle (right)

|                  | Installation mode 90° bend |        |     |     |     |     |     |      |      |      |      | lation mod<br>with corne |        |      |
|------------------|----------------------------|--------|-----|-----|-----|-----|-----|------|------|------|------|--------------------------|--------|------|
|                  |                            |        |     |     | RS  | 331 |     |      |      |      |      |                          | RS 330 |      |
| DN               | 10                         | 12     | 16  | 20  | 25  | 32  | 40  | 50   | 65   | 80   | 100  | 125                      | 150    | 200  |
| r                | 80                         | 90     | 110 | 150 | 170 | 200 | 240 | 280  | 300  | 350  | 400  | -                        | -      |      |
| а                | 155                        | 170    | 200 | 255 | 285 | 340 | 400 | 460  | 490  | 575  | 635  | 700                      | 800    |      |
| I <sub>max</sub> | 50                         | 50     | 50  | 50  | 55  | 70  | 75  | 80   | 80   | 95   | 95   | 120                      | 130    |      |
| NL               | 280                        | 300    | 350 | 450 | 500 | 600 | 700 | 800  | 850  | 1000 | 1100 | -                        | -      |      |
|                  |                            | RS 531 |     |     |     |     | RS  | 430  |      |      |      |                          | RS 430 |      |
| r                | 140                        | 160    | 180 | 230 | 260 | 290 | 310 | 360  | 400  | 470  | 580  | -                        | -      | -    |
| а                | 255                        | 285    | 315 | 375 | 405 | 460 | 520 | 580  | 635  | 750  | 875  | 850                      | 1000   | 1150 |
| I <sub>max</sub> | 55                         | 60     | 60  | 60  | 60  | 70  | 80  | 85   | 90   | 95   | 95   | 120                      | 130    | 140  |
| NL               | 450                        | 500    | 550 | 650 | 700 | 800 | 900 | 1000 | 1100 | 1300 | 1500 | -                        | -      | -    |

Table 4.6.1 Installation dimensions for metal hoses for the absorption of vibrations

If the leak tightness requirements are minimal, then the stripwound hoses are also well suited to absorbing vibrations. They have very good damping qualities on account of the abrasion between the individual threads.



(HYDRA)

With appropriate installation and proper use, hose assemblies are durable, robust and nearly maintenance-free products. Dynamic loads such as movements and vibrations but also pulsations and impacts can reduce the service life. Hose lines must regularly undergo visual inspection by the operating company. Particular attention is to be paid to damage, e.g. buckling, torn braiding and corrosion as well as soiling.

The following information is intended to help avoid installation faults and damage to the hose assemblies through improper use.

### Handling and installation (figures 4.7.1 to 4.7.6)

In general, the manufacturer performs a pressure and leak test.

Check hose lines for possible damage, e.g. in transport, before installation. Do not install defective hose assemblies.

Fixed hose lines, in which connecting and decoupling is not part of standard operation, should undergo a pressure test before commissioning. This also applies for recommissioning of these hose lines after installation and extension or after plant conversion. In every case, the safety regulations applicable for the particular application must be observed.

Do not exceed the permissible values for operating pressure, test pressure and operating temperature. Only apply the test pressure at room temperature.

Safe operation is exclusively based on the conditions agreed in the order.

The insulation may not restrict the flexibility of the hose assembly. Do not use insulation material with corrosive components.

Hose assemblies must be protected against heavy soiling.

# 4.7 Installation and assembly instructions

Hose assemblies are to be subjected to a regular visual inspection by the operator. Particular attention is to be paid to damage, e.g. buckling or torn braiding, soiling and corrosion. Hose lines with visible defects are not allowed to be operated further.

Protect hose assemblies against mechanical damage. Unroll hose assemblies when setting up.

Hose assemblies may not be pulled over the floor or over sharp objects, as pulling on one end of a hose ring can lead to the permissible minimum bending radius being underrun and/or the hose being subjected to torsion (fig. 4.7.1).

If external mechanical loads, such as frequent pulling to the ground, cannot be avoided then the hose assembly should be protected against damage, either by an external round wire coil or by a protective hose, depending on degree of load (fig. 4.7.2).

Hose assemblies are to be mounted in such a way that they do not come into contact with each other or with surrounding objects during operation (fig. 4.7.3).

The permissible minimum bending radius must not be underrun. Avoid a localised underrun of the permissible minimum bending radius by the use of rollers or fixed pipe bends (fig. 4.7.4).

Avoid torsion as it can cause early breakdown.

To mount hose assemblies in a torsion-free manner, first attach the pipeline firmly on one side and fix the other side loosely. After that, carry out 2 or 3 movement cycles at zero pressure so that the hose assembly can be aligned free of torsion. The second side of the hose assembly can then be pulled tight.





Counter flanges must then be uniformly tightened cross-wise. The bolt holes must exactly be aligned. A loose flange can be used on one side (fig. 4.7.5 left). A second spanner must be held against rotatable threaded connections (fig. 4.7.5 right).

With welding or brazing work, the hose assemblies must be protected against weld or flux spatter. Flux residue has to be removed. Electrical short circuit through welding electrodes or ground cable must be avoided without fail, since this can cause irreparable damage to the hose. In the case of hose assemblies with internal braze ends, the hose assembly end to be brazed should be protected against excessive heating with a wet strip or with heat insulating paste. Keep the burner away from the hose assembly (fig. 4.7.6).

Attach fixed points or pipe guides directly to the hose assembly ends.



Fig. 4.7.1 Proper (left) and incorrect handling (right) of hose assemblies

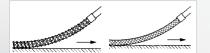



Fig. 4.7.2 External protection via round wire coil or protective hose for hose assemblies (at top) subject to heavy mechanical loads and non-approved use of an unprotected hose assembly (at bottom).

# 4.7 Installation and assembly instructions

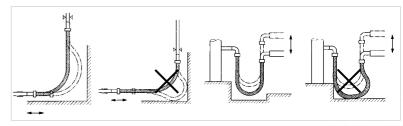



Fig. 4.7.3 Collision-free (left sub-images) as well as incorrect installation of hose assemblies (right sub-images)

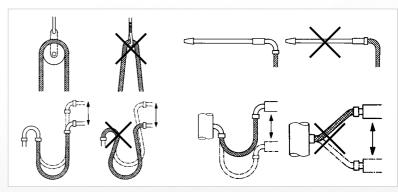



Fig. 4.7.4 Avoidance of smaller bending radii using rollers or rigid pipe bends (left sub-images) compared with incorrect installation (right sub-images)

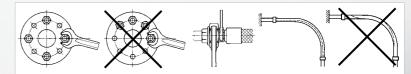



Fig. 4.7.5 Torsion-free (left sub-images) and incorrect mounting (right sub images) of the connecting flange



# 4.7 Installation and assembly instructions

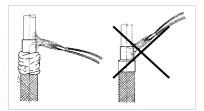



Fig. 4.7.6 correct (left) and incorrect brazing (right) on a hose assembly

Absorption of expansions and/or movements (figures 4.7.7 to 4.7.10)

Axial absorption of expansions is not permitted. Large movements must be absorbed by the 180° bend. Installation of a hose assembly in the 90° bend or a lateral absorption of movement (fig. 4.7.7) can absorb thermal expansions (small movements).

The hose axis and motion direction must be at the same level to avoid torsion (fig. 4.7.8).

The hose assembly must be long enough to avoid underrunning the permissible minimum bending radius at the fixing points (fig. 4.7.9).

Hose assemblies for lateral expansion compensation must be installed at right angles to the direction of expansion and be pre-stressed to half of the occurring expansion (fig. 4.7.10). The hose assemblies may not be too short, to avoid tensile loads in the end positions. With larger expansions/movements, a hose assembly must be installed in the 90° or in the 180° bend.



Fig. 4.7.7 Correct absorption of movement in the U-bend configuration or lateral (lower and left sub-images) and impermissible axial absorption of movement (upper and right sub-images)



Fig. 4.78 Movement of hose assembly without (left sub-images) and with torsional load (right sub-images)



Fig. 4.7.9 Sufficient length (left) and too short (right) hose assembly in 180° bend

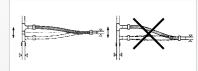



Fig. 4.7.10 Lateral expansion compensation with correctly prestressed (left) and wrongly installed hose assembly (right)



# 4.7 Installation and assembly instructions

# Correction of misalignment (fig 4.7.11)

Hose assemblies for the correction of misalignments are to be installed stressfree and are to be fitted with sufficient large neutral hose ends. The hose assembly must not be folded over or stretched.

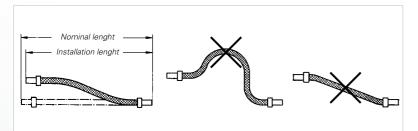



Fig. 4.7.11 Correct (left), too big (middle) and too small nominal length (right) of a hose assembly for correcting a misalignment.

# Absorption of vibrations (figures 4.7.12 and 7.4.13)

The hose assembly should be attached as close as possible to the vibration aggregate.

The vibration direction must be perpendicular to the hose axis (HYDRA vibration absorber) or on the level of the 90° bend or angle formed by the hose assembly (fig. 4.7.12).

Select the length and installation dimensions of the hose assembly in such a way that the hose assembly can be installed stress-free and in a way that creates a 90° bend or angle (fig. 4.7.13).

For the hose assembly to be able to absorb vibrations, a fixed point must be provided on the conveying pipeline. The hose assembly must not be subjected to supporting the pipe weight.

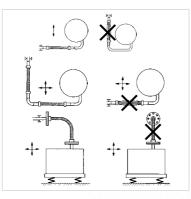



Fig. 4.7.12 Correct positioning (left subimage) and incorrect installation (right sub-images) of hose assemblies for the absorption of vibrations

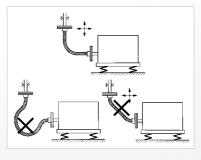
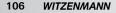




Fig. 4.7.13 Hose measured correctly (top), too long (bottom left) and too short (bottom right) to absorb vibrations



1301uk/8/05/20/pdf



# PRODUCT TESTING AT WITZENMANN

mmm

# 5. Product testing at Witzenmann

| 5.1 | Testing and analysis options                        | 110 |
|-----|-----------------------------------------------------|-----|
| 5.2 | Production-related tests on metal hoses             | 112 |
| 5.3 | Type approvals and destructive tests on metal hoses | 114 |

# 5.1 Overview of testing and analysis options

Witzenmann has a comprehensive range of test and analysis options for determining and checking product characteristics on an experimental basis. The test field includes, among other things:

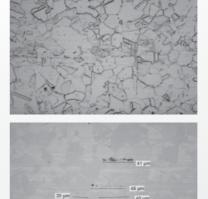
- Multiple test stands to represent complex movements,
- Electro-dynamic shakers,
- One pressure impulse test stand,
- Test stands for proof pressure testing as well as
- Leakage test stands

Witzenmann also has a materials' laboratory for mechanical, technological and metallographic tests, as well as for welding process and approval tests.

- The laboratory equipment includes the following:
- Tension and impact-bending test machines,
- Comprehensive preparation technology for metallographic grinding,
- Scanning electronic microscope with integrated X-ray spectral analysis,
- A rinsing cabinet,
- Corrosion test stands, as well as
- An X-ray, radio graphen facilities

The following procedures may be carried out or produced:

- Testing of mechanical characteristics as well as corrosion resistance for hose and connecting piece materials at room temperature or at high temperatures,
- Micro sections evaluation of the geometry of bellows and weld seams,
- Micro sections to analyse structure, determine grain size and delta ferrite,
- Hardness measurements,
- Analysis of material composition and the local element distribution,
- Fracture surface and inclusion analyses and
- Cleanliness analysis


# 5.1 Overview of testing and analysis options

Other tasks of the metallographic laboratory include assessments of metal hoses which failed in the field or during testing, as well as an analysis of the root cause of the damage.

The Witzenmann material laboratory is recognised by the main approval and classification companies as a production-independent testing authority for destructive and non-destructive material testing, and is also approved to issue test certificates.



Fig. 5.1.1 Surfaces (top), structure (middle) and purity analysis (bottom) on precision strip made of material 1.4571.





5.2 Production-related tests on metal hoses

# Leak test

The Witzenmann standard leak test is carried out on hoses with nitrogen under water and at room temperature. The minimum period for hoses without braid is 30 seconds and 60 seconds with braid. No bubbles may occur. This test detects leakage rates of greater than approximately 10<sup>-4</sup> mbar I / sec.

The helium leakage test is used as standard for higher leak tightness requirements. The vacuum method of the helium leakage test is a high-resolution leak test. The component to be tested is evacuated and the surface away from the vacuum is exposed to a helium atmosphere. Helium atoms penetrating the vacuum are identified using a mass spectrometer. The sensitivity of the measurement increases with the duration of the test period. The detection limit is approx.  $10^{-10}$  mbar l / s.

Leakage rates of 10<sup>-6</sup> mbar I / s can be identified well in practice. This corresponds to a flow volume of approx. 0.03 I / year under normal conditions. Table 5.2.1 provides an overview of leak sizes and associated volume flows under normal conditions for other leak rates ( $\Delta P = 1$  bar, 20 °C).

| Leakage rate Leak diameter |       | Volume flow       | Volume flow             | Remark/example                                 |
|----------------------------|-------|-------------------|-------------------------|------------------------------------------------|
|                            |       | (under norm       | al conditions)          |                                                |
| [mbar l / s]               | [µm]  | [l / s]           | [l/ year]               |                                                |
| <b>10</b> <sup>-10</sup>   | 0.001 | 10-13             | 3.15 x 10 <sup>-6</sup> | Verification limit                             |
| 10 <sup>-8</sup>           | 0.01  | 10-11             | 3.15 x 10 <sup>-4</sup> | Highly vacuum-tight*                           |
| 10 <sup>-7</sup>           | 0.03  | 10 <sup>-10</sup> | 3.15 x 10 <sup>-3</sup> | Gas-tight*                                     |
| 10 <sup>-6</sup>           | 0.1   | 10 <sup>-9</sup>  | 0.032                   | -                                              |
| 10 <sup>-5</sup>           | 0.33  | 10 <sup>-8</sup>  | 0.315                   | -                                              |
| 10-4                       | 1     | 10-7              | 3.15                    | Vapour-tight*                                  |
| 10 <sup>-3</sup>           | 3.3   | 10-6              | 31.5                    | Watertight* an air bubble<br>(ø 1 mm) per sec. |
| 10°                        | 100   | 10 <sup>-3</sup>  | 31500                   | Leaky water tap                                |

Table 5.2.1 Leakage rates and associated volume flows for helium leakage test \*non-standard representation, no exact definition for a leakage rate Helium is also used for a suiting process for testing with special requests or on request.

# Testing of weldseams

A continuous leak test is carried out on the longitudinal butt-welds for metal hoses before deformation.

X-ray analysis is only worthwhile in the area of connecting seams for hoses without braid.

The connecting seams in hose assemblies with and without braid can be subjected to a surface crack detection test according to the dye penetration process. The inspection occurs visibly; with the red-white method during daylight and, with the fluorescent method, under UV lighting.



#### Pressure resistance testing

DIN EN ISO 10380 defines pressure resistance testing for metal hoses as the pressure lengthening and bursting tests. Both are usually carried out at room temperature with water as a test medium.

# Load cycle testing

The proof of service life for metal hoses can only be issued as part of a test. Standard tests are the U-bend configuration test according to DIN EN ISO 10380 or alternating bending test with a defined bending radius, e.g. for gas hoses, according to EN 14800. Fig. 5.2.1 shows such an alternating bending test with templates for defining the bending radius. Alternatively, loads, similar those which occur in practice, can also be reproduced in the test. This requires significantly more complex test facilities.

Load cycle tests on hoses normally take place during the range of finite life, as rubbing wear and fatigue mean there is no real durability. For statistical reasons, load cycle testing should always be carried out on several test objects. The standard number of test objects at Witzenmann is 6 test objects per load level.

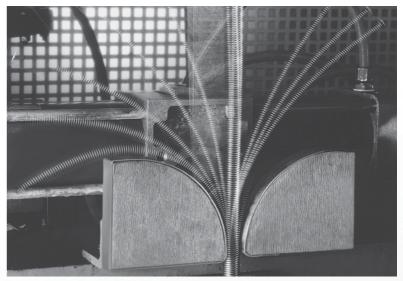



Fig. 5.3.1 Alternating bending test on a metal hose

#### **Characterisation of components**

Experiments may also be used to determine component characteristics, which are then confirmed with a test certificate. The following are possible for hoses:

- Measurement of geometry,
- Recording of pressure volume or pressure extension curves,
- Determination of natural frequencies as well as characterisation of dynamic transfer behaviour.



# **TECHNICAL TABLES**

# 6. Technical tables

| 6.1 | Hose selection from the manual                              | 118 |
|-----|-------------------------------------------------------------|-----|
| 6.2 | Hose selection with FLEXPERTE                               | 123 |
| 6.3 | HYDRA annularly corrugated hoses – goods sold by the metre  | 124 |
|     | - RS 330 / 331 – stainless steel annularly corrugated hoses | 124 |
|     | - RS 321 – stainless steel annularly corrugated hoses       | 126 |
|     | - RS 341 – stainless steel annularly corrugated hoses       | 128 |
|     | - RS 531 – stainless steel annularly corrugated hoses       | 130 |
|     | - RS 430 – stainless steel annularly corrugated hoses       | 132 |
|     | - RZ 331 – bronze annularly corrugated hoses                | 134 |
|     | - RS 351 – semi-flexible annularly corrugated hoses         | 136 |
|     | - IX 331 – semi-flexible annularly corrugated hoses         | 137 |
|     | - ME 539 – semi-flexible helical corrugated hoses           | 138 |
| 6.4 | Connection fittings                                         | 139 |
|     | - Connection fittings for HYDRA corrugated hose assemblies  | 140 |
|     | - Self-assembly connection fittings                         | 174 |
| 6.5 | HYDRA annularly corrugated hose assemblies                  | 184 |
|     | - HYDRA double hose assemblies                              | 184 |
|     | - HYDRA insulating hose                                     | 186 |
|     | - PTFE-lined HYDRA hose assemblies                          | 187 |
|     | - HYDRA vibration absorber                                  | 188 |
|     | - HYDRA gas hose assemblies according to DIN 3384           | 190 |
|     | - Hose assemblies for presses                               | 194 |
|     | - Hydraflex – hose assemblies for semi-flexible pipework    | 198 |
| 6.6 | HYDRA stripwound hoses – fittings, hose assemblies          | 200 |
|     | - HYDRA protective hoses                                    | 202 |
|     | - Connection fittings for HYDRA – stripwound hoses          | 228 |
|     | - Air extraction, exhaust and conveying hoses               | 231 |
|     | - Flexible arms                                             | 250 |

The basic data for the selection of a hose from the technical tables is as follows

- The nominal diameter DN,
- The operating pressure PS,
- The operating temperature TS, as nec.
- The test pressure PT plus
- The motion to be absorbed.

# Design based on nominal pressure

The key factor for designing on the basis of nominal pressure is usually the operating pressure, converted to a value at room temperature (PS/Ct). Should a high test pressure (PT) be specified separately, then this can also be the key factor.

$$PN \ge \max \begin{cases} PS / C_t \\ PT / 1.5 \end{cases}$$
(6.1.1)

For some hose assemblies, test pressures greater than 1.5 PN are permissible on request. For temperatures TS > 20 °C, the pressure reduction factor

$$C_{t} = \frac{PS}{P_{BT}} = \frac{R_{P1,0}(TS)}{R_{P1,0}(20^{\circ}C)}$$
(6.1.2)

takes the reduction of the mechanical strength of hose and braid into account. Numerical values for  $C_t$  according to ISO 10380\* are indicated in table 6.1.1. With differences between hose and braid materials, the reduction factor for the less solid material is always to be used.

|                |      | Temperature [°C] |      |      |      |      |      |      |      |      |      |      |
|----------------|------|------------------|------|------|------|------|------|------|------|------|------|------|
| Material       | 20   | 50               | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 500  | 550  |
| 1.4306*        | 1,00 | 0,89             | 0,72 | 0,64 | 0,58 | 0,54 | 0,50 | 0,48 | 0,46 | 0,44 | 0,43 | 0,43 |
| 1.4301*        | 1,00 | 0,90             | 0,73 | 0,66 | 0,60 | 0,55 | 0,51 | 0,49 | 0,48 | 0,46 | 0,46 | 0,46 |
| 1.4541*        | 1,00 | 0,93             | 0,83 | 0,78 | 0,74 | 0,70 | 0,66 | 0,64 | 0,62 | 0,60 | 0,59 | 0,58 |
| 1.4404/1.4435* | 1,00 | 0,90             | 0,73 | 0,67 | 0,61 | 0,58 | 0,53 | 0,51 | 0,50 | 0,49 | 0,47 | 0,47 |
| 1.4571*        | 1,00 | 0,92             | 0,80 | 0,76 | 0,72 | 0,68 | 0,64 | 0,62 | 0,60 | 0,59 | 0,58 | 0,58 |
| 2.1020/2.1030  | 1,00 | 0,95             | 0,90 | 0,80 | 0,75 | 0,70 | -    | -    | -    | -    | -    | -    |

Table 6.1.1 Reduction factors for the pressure Ct

# 6.1 Hose selection from the manual

#### **Pressure pulsations**

The pressure surges or growing pulsating loads added to the static pressure can considerably reduce the service life of the hose. Their influence can be estimated on a mathematical basis at Witzenmann on request. It depends on the braid, the size of the pulsating loads and their frequency. Such mathematical backup is recommended for pulsating loads  $\Delta p > 0.25$  PN.

### Selection of connectors

The possible connectors for use with the hose assembly are also listed in chapter 6.3. When making a selection, it is important to note that the maximum nominal pressure for the hose assembly is always determined by the smaller value of the permissible nominal pressure for hoses sold by the metre and connectors.

# Certification according to DIN EN ISO 10380

The technical data for HYDRA metal hoses outlined in this manual comply with DIN EN ISO 10380. Hoses from the RS331/330 series are certified in accordance with DIN EN ISO 10380:2013 as hose assemblies without braiding and with single braiding respectively and the RS531/430 series are certified additionally as hose assemblies with double braiding. Fusion welding is certified as the process for connecting the hose and connectors. Other types of hoses can be certified by agreement.

#### 120 WITZENMANN

#### 1301uk/8/05/20/pdf

# Hoses with a nominal pressure of PN > 250 are available on request.

For some hoses the permissible nominal pressure for static application is higher than the nominal pressure listed in Table 6.1.2 when the hose is moving. This is caused by the risk of a localised buckling of the hose. The statically permissible values only arise from the burst pressure and are - if deviating from the nominal pressure for dynamic applications - listed with the individual series.

The selected hose type must be capable of achieving the required nominal pressure. In order to simplify the selection of hoses, Table 6.1.2 lists the maximum permissible nominal pressures for braided goods sold by the metre for all the hose series listed in the manual. Often, several types of hoses can be used for a specified nominal pressure. The final choice focuses on the bending radius and

# Name of the hoses

6.1 Hose selection from the manual

Selection of hose type

mounting situation.

The name of the hoses provides information on the annularly corrugated hose used, the braid and the nominal diameter. RS321 S00 DN32 for example stands for a tightly-corrugated annularly corrugated hose (RS321) with a nominal diameter of 32 (DN32) without connectors and without braid (S00).

RS531L22 DN10 indicates a hose assembly with a nominal diameter of 10 (DN10), consisting of an annularly corrugated with standard corrugation and increased wall thickness (RS531) with connectors and double braid (L22).

# 6.1 Hose selection from the manual

|                     | Max. nominal pressure PN according to DIN EN 10380 for braided goods sold by the metre |        |        |        |        |        |  |  |
|---------------------|----------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|
| Nominal<br>diameter | RS 331 /<br>RS 330                                                                     | RS 321 | RS 341 | RS 531 | RS 430 | RZ 331 |  |  |
| 4/5                 | 100                                                                                    |        |        | 200    |        |        |  |  |
| 6                   | 150                                                                                    | 100    | 100    | 250    |        |        |  |  |
| 8                   | 125                                                                                    | 100    | 100    | 250    |        | 60     |  |  |
| 10                  | 100                                                                                    | 80     | 65     | 225    |        | 45     |  |  |
| 12                  | 75                                                                                     | 50     | 65     | 200    |        | 35     |  |  |
| 15/16               | 65                                                                                     | 50     | 65     | 200    |        | 32     |  |  |
| 20                  | 40                                                                                     | 40     | 40     |        | 100    | 30     |  |  |
| 25                  | 65                                                                                     | 40     | 50     |        | 100    | 30     |  |  |
| 32                  | 25                                                                                     | 20     | 25     |        | 80     | 30     |  |  |
| 40                  | 40                                                                                     | 20     | 40     |        | 65     | 25     |  |  |
| 50                  | 30                                                                                     | 16     | 25     |        | 65     | 28     |  |  |
| 65                  | 25                                                                                     | 16     | 25     |        | 50     |        |  |  |
| 80                  | 16                                                                                     | 10     | 25     |        | 25     |        |  |  |
| 100                 | 10                                                                                     | 4      | 16     |        | 16     |        |  |  |
| 125                 | 6                                                                                      |        |        |        | 16     |        |  |  |
| 150                 | 6                                                                                      |        |        |        | 16     |        |  |  |
| 200                 |                                                                                        |        |        |        | 16     |        |  |  |
| 250                 |                                                                                        |        |        |        | 10     |        |  |  |
| 300                 |                                                                                        |        |        |        | 6      |        |  |  |

Table 6.1.2 Maximum permissible nominal pressures according to DIN EN 10380 for braided goods sold by the metre, with dynamic application



(HYDRA)

# **Determination of nominal length**

If the hose type and nominal diameter are defined, the permissible nominal bending radius for frequent movements can be found in table 6.1.3 or the tables in chapter 6.3. The hose models RS 321, RS 331 / RS 330, RS 531 and RZ 331 have nominal bending radii that are smaller or the same as the nominal bending radius for type 1 hoses according to DIN EN ISO 10380.

The nominal bending radii of the hose models RS 341 and RS 430 are to be allocated to the nominal diameters for type 1 or 2. The minimum length of the hose assembly is calculated from the nominal bending radius. According to the mounting situation and the size of the movement to be absorbed, the formulas indicated in chapters 4.3 to 4.6 are to be used.

|                     |                            | Nominal bending radius for frequent movements r [mm] |        |        |                            |        |        |        |  |  |
|---------------------|----------------------------|------------------------------------------------------|--------|--------|----------------------------|--------|--------|--------|--|--|
| Nominal<br>diameter | DIN EN ISO<br>10380 type 1 | RS 331 /<br>RS 330                                   | RS 321 | RS 531 | DIN EN ISO<br>10380 type 2 | RS 341 | RS 430 | RZ 331 |  |  |
| 4/5                 | 100                        | 80                                                   |        | 100    | 120                        |        |        |        |  |  |
| 6                   | 110                        | 80                                                   | 70     | 110    | 140                        | 110    |        |        |  |  |
| 8                   | 130                        | 120                                                  | 80     | 130    | 165                        | 130    |        | 90     |  |  |
| 10                  | 150                        | 130                                                  | 90     | 150    | 190                        | 150    |        | 130    |  |  |
| 12                  | 165                        | 140                                                  | 100    | 165    | 210                        | 165    |        | 150    |  |  |
| 15/16               | 195                        | 160                                                  | 110    | 195    | 250                        | 195    |        | 170    |  |  |
| 20                  | 225                        | 170                                                  | 130    |        | 285                        | 225    | 285    | 200    |  |  |
| 25                  | 260                        | 190                                                  | 150    |        | 325                        | 260    | 325    | 230    |  |  |
| 32                  | 300                        | 260                                                  | 200    |        | 380                        | 300    | 380    | 260    |  |  |
| 40                  | 340                        | 300                                                  | 210    |        | 430                        | 340    | 430    | 310    |  |  |
| 50                  | 390                        | 320                                                  | 240    |        | 490                        | 390    | 490    | 360    |  |  |
| 65                  | 460                        | 460                                                  | 280    |        | 580                        | 460    | 580    |        |  |  |
| 80                  | 660                        | 660                                                  | 400    |        | 800                        | 660    | 800    |        |  |  |
| 100                 | 750                        | 750                                                  | 500    |        | 1000                       | 750    | 1000   |        |  |  |
| 125                 | 1000                       | 1000                                                 |        |        | 1250                       |        | 1250   |        |  |  |
| 150                 | 1250                       | 1250                                                 |        |        | 1550                       |        | 800    |        |  |  |
| 200                 | 1600                       |                                                      |        |        | 2000                       |        | 1100   |        |  |  |
| 250                 | 2000                       |                                                      |        |        | 2500                       |        | 1350   |        |  |  |
| 300                 | 2400                       |                                                      |        |        | 3000                       |        | 1600   |        |  |  |

Table 6.1.3 Nominal bending radius for frequent movements

# 6.1 Hose selection from the manual

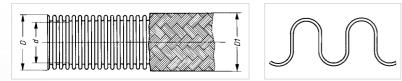
### Length tolerance

The nominal length (NL) relates to the hose fitted with connection fittings and describes the total length of the hose. Unless otherwise agreed in the order, the following permissible variations in length are to be taken into account in checking the nominal length:

| Nominal lengths in mm  | Permissible<br>deviations in length |
|------------------------|-------------------------------------|
| Up to 500              | + 10 mm<br>- 5 mm                   |
| Over 500<br>Up to 1000 | + 15 mm<br>- 10 mm                  |
| Over 1000              | + 1.5%<br>- 1.0%                    |

Smaller length tolerances are possible but they have to be agreed when the order is placed.

# Cleanliness


Mechanically corrugated hoses sold by the meter are produced up to DN 50 using oil and grease free processes. This and subsequent cleaning procedures also permit the use of HYDRA hose assemblies for applications with the highest cleanliness requirements, such as vacuum applications or applications involving oxygen and hydrogen.

# 6.2 Hose selection with FLEXPERTE

FLEXPERTE is a configuration software for flexible metallic elements. Accordingly, the current configuration rules allow the use of products in the standard production series, as and when required. In addition to metal hoses, the product range can also be used to configure metal bellows, expansion joints and pipe supports. When the operating conditions have been entered, the program offers a selection of suitable products along with all necessary information and drawings for direct further processing in the form of an inquiry or an order. The program is available online for immediate use at www.flexperte.de.

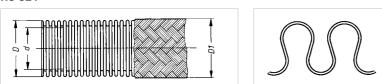


RS 330 / 331



- Annularly corrugated hose made of butt-welded pipe, mechanically corrugated (DN 4 to DN 100) or hydraulically shaped (from DN 125)
- Wall thickness: standard
- Corrugation: standard
- Versions: RS 330 / RS 331 S00 without braid RS 330 / RS 331 S12 with single braid
- Maximum production length: DN 4: 30 m
   DN 6 - 50: 100 m
   DN 65 - 100: 20 m
   DN 125 - 150: 10 m
   Longer hose assemblies available on request

 Standard materials: Annularly corrugated hose 1.4404 or 1.4541 braid 1.4301 Other materials are available on request.


# 6.3 HYDRA® annularly corrugated hoses - goods sold by the metre

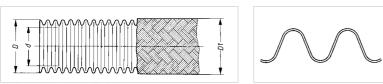
| DN  | Туре                 | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum<br>bending<br>radius<br>Single<br>bend | Nominal<br>bending<br>radius<br>Frequent<br>movements | Permissi-<br>ble static<br>operating<br>pressure<br>at 20 °C<br>SF4 | Nominal<br>pressure<br>ISO<br>10380<br>SF4 | Weight<br>approx. |
|-----|----------------------|--------------------|---------------------|--------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------------------|
| -   | -                    | d                  | D,D1                | d,D,D1                   | r <sub>min</sub>                               | r <sub>n</sub>                                        | p <sub>perm</sub>                                                   | PN                                         | -                 |
| -   | -                    | mm                 | mm                  | mm                       | mm                                             | mm                                                    | bar                                                                 | -                                          | kg/m              |
| 4   | RS331S00<br>RS331S12 | 4.3                | 7.1<br>8.2          | ± 0.1                    | 15<br>25                                       | 80                                                    |                                                                     | 0<br>00                                    | 0.06<br>0.11      |
| 6   | RS331S00<br>RS331S12 | 6.2                | 9.7<br>10.8         |                          | 15<br>25                                       | 80                                                    |                                                                     | 8<br>50                                    | 0.08<br>0.14      |
| 8   | RS331S00<br>RS331S12 | 8.3                | 12.3<br>13.7        |                          | 16<br>32                                       | 120                                                   |                                                                     | 0<br>25                                    | 0.10<br>0.21      |
| 10  | RS331S00<br>RS331S12 | 10.2               | 14.3<br>15.7        | ± 0.2                    | 18<br>38                                       | 130                                                   |                                                                     | 6<br>)0                                    | 0.11<br>0.23      |
| 12  | RS331S00<br>RS331S12 | 12.2               | 16.8<br>18.2        |                          | 20<br>45                                       | 140                                                   |                                                                     | 0<br>5                                     | 0.12<br>0.25      |
| 16  | RS331S00<br>RS331S12 | 16.2               | 21.7<br>23.3        |                          | 28<br>58                                       | 160                                                   |                                                                     | 3<br>5                                     | 0.19<br>0.40      |
| 20  | RS331S00<br>RS331S12 | 20.2               | 26.7<br>28.3        |                          | 32<br>70                                       | 170                                                   |                                                                     | 5<br>0                                     | 0.27<br>0.49      |
| 25  | RS331S00<br>RS331S12 | 25.5               | 32.2<br>34.2        | ± 0.3                    | 40<br>85                                       | 190                                                   |                                                                     | 1<br>5                                     | 0.38<br>0.79      |
| 32  | RS331S00<br>RS331S12 | 34.2               | 41.0<br>43.0        |                          | 50<br>105                                      | 260                                                   |                                                                     | .5<br>5                                    | 0.49<br>0.96      |
| 40  | RS331S00<br>RS331S12 | 40.1               | 49.7<br>52.0        |                          | 60<br>130                                      | 300                                                   |                                                                     | .5<br>0                                    | 0.77<br>1.46      |
| 50  | RS331S00<br>RS331S12 | 50.4               | 60.3<br>62.6        | ± 0.4                    | 70<br>160                                      | 320                                                   |                                                                     | 1<br>0                                     | 0.91<br>1.67      |
| 65  | RS331S00<br>RS331S12 | 65.3               | 78.0<br>81.2        |                          | 115<br>200                                     | 460                                                   | 1<br>35                                                             | 1<br>25                                    | 1.51<br>2.88      |
| 80  | RS331S00<br>RS331S12 | 80.2               | 94.8<br>98.0        | ± 0.5                    | 130<br>240                                     | 660                                                   | 2<br>32                                                             | 2<br>16                                    | 2.28<br>4.08      |
| 100 | RS331S00<br>RS331S12 | 100.0              | 116.2<br>119.4      |                          | 160<br>290                                     | 750                                                   | 1<br>16                                                             | 1<br>10                                    | 2.53<br>4.54      |
| 125 | RS330S00<br>RS330S12 | 126.2              | 145.0<br>148.2      | ± 0.6                    | 350                                            | 1000                                                  | 0.5<br>10                                                           | 0.5<br>6                                   | 2.68<br>5.25      |
| 150 | RS330S00<br>RS330S12 | 151.6              | 171.0<br>174.2      | ± 1.4                    | 400                                            | 1250                                                  | 0.5<br>10                                                           | 0.5<br>6                                   | 3.41<br>6.48      |

(HYDRA)

(HYDRA®)

RS 321




- Highly flexible annularly corrugated hose made of butt-welded pipe, mechanically corrugated
- Wall thickness: standard
- Corrugation: narrow
- Versions: RS 321 S00 without braid RS 321 S12 with single braid
- Maximum production length: DN 6 - 32: 70 m DN 40 - 50: 20 m DN 65 - 100: 7 m longer hose assemblies available on request
- Standard materials: Annularly corrugated hose 1.4404 or 1.4541 braid 1.4301 Other materials are available on request.

# 6.3 HYDRA® annularly corrugated hoses - goods sold by the metre

| DN  | Туре                 | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum<br>bending<br>radius<br>Single<br>bend | Nominal<br>bending<br>radius<br>Frequent<br>movements | Permissi-<br>ble static<br>operating<br>pressure<br>at 20 °C<br>SF4 | Nominal<br>pressure<br>ISO<br>10380<br>SF4 | Weight<br>approx. |
|-----|----------------------|--------------------|---------------------|--------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------------------|
| -   | -                    | d                  | D,D1                | d,D,D1                   | r <sub>min</sub>                               | r <sub>n</sub>                                        | p <sub>perm</sub>                                                   | PN                                         | -                 |
| -   | -                    | mm                 | mm                  | mm                       | mm                                             | mm                                                    | bar                                                                 | -                                          | kg/m              |
| 6   | RS321S00<br>RS321S12 | 6.1                | 9.9<br>11.0         |                          | 20<br>25                                       | 70                                                    |                                                                     | 5<br>)0                                    | 0.10<br>0.17      |
| 8   | RS321S00<br>RS321S12 | 8.2                | 12.5<br>13.9        |                          | 25<br>30                                       | 80                                                    |                                                                     | 6<br>)0                                    | 0.14<br>0.25      |
| 10  | RS321S00<br>RS321S12 | 10.1               | 14.4<br>15.8        | ± 0.2                    | 30<br>35                                       | 90                                                    |                                                                     | 0<br>0                                     | 0.14<br>0.26      |
| 12  | RS321S00<br>RS321S12 | 12.1               | 17.0<br>18.4        |                          | 35<br>40                                       | 100                                                   |                                                                     | 3<br>0                                     | 0.17<br>0.30      |
| 16  | RS321S00<br>RS321S12 | 16.2               | 22.0<br>23.6        |                          | 40<br>50                                       | 110                                                   | (<br>5                                                              | 5<br>0                                     | 0.26<br>0.46      |
| 20  | RS321S00<br>RS321S12 | 20.2               | 26.8<br>28.4        |                          | 50<br>55                                       | 130                                                   |                                                                     | 1<br>0                                     | 0.31<br>0.53      |
| 25  | RS321S00<br>RS321S12 | 25.5               | 32.2<br>34.2        | ± 0.3                    | 60<br>65                                       | 150                                                   |                                                                     | 1<br>0                                     | 0.49<br>0.90      |
| 32  | RS321S00<br>RS321S12 | 34.2               | 41.0<br>43.0        |                          | 70<br>75                                       | 200                                                   |                                                                     | .5<br>0                                    | 0.50<br>0.97      |
| 40  | RS321S00<br>RS321S12 | 40.0               | 49.8<br>52.1        | ± 0.4                    | 80<br>90                                       | 210                                                   | 1<br>30                                                             | 1<br>20                                    | 1.13<br>1.81      |
| 50  | RS321S00<br>RS321S12 | 50.1               | 60.5<br>62.8        |                          | 100<br>110                                     | 240                                                   | 1<br>25                                                             | 1<br>16                                    | 1.34<br>2.10      |
| 65  | RS321S00<br>RS321S12 | 65.0               | 78.2<br>81.4        | ± 0.5                    | 145<br>200                                     | 280                                                   | 1<br>20                                                             | 1<br>16                                    | 1.96<br>3.33      |
| 80  | RS321S00<br>RS321S12 | 80.0               | 95.0<br>98.2        |                          | 200<br>240                                     | 400                                                   | 1<br>16                                                             | 1<br>10                                    | 3.12<br>4.92      |
| 100 | RS321S00<br>RS321S12 | 99.4               | 116.8<br>120.0      | ± 0.6                    | 240<br>290                                     | 500                                                   | 1<br>16                                                             | 1<br>4                                     | 3.70<br>5.71      |



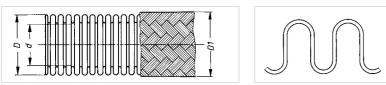
RS 341



- Annularly corrugated hose made of butt-welded pipe, mechanically corrugated
- Wall thickness: standard
- Corrugation: wide
- Versions: RS 341 S00 without braid RS 341 S12 with single braid
- Maximum production lengths: DN 6 - 8: 10 m DN 10 - 50: 100 m DN 65 - 100: 6.5 m Longer hose assemblies available of request
- Standard materials:

Annularly corrugated hose 1.4404 or 1.4541 braid 1.4301

Other materials are available on request.


# 6.3 HYDRA® annularly corrugated hoses - goods sold by the metre

| DN  | Туре                 | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum<br>bending<br>radius<br>Single<br>bend | Nominal<br>bending<br>radius<br>Frequent<br>movements | Permissi-<br>ble static<br>operating<br>pressure<br>at 20 °C<br>SF4 | Nominal<br>pressure<br>ISO<br>10380<br>SF4 | Weight<br>approx. |
|-----|----------------------|--------------------|---------------------|--------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------------------|
| -   | -                    | d                  | D,D1                | d,D,D1                   | r <sub>min</sub>                               | r <sub>n</sub>                                        | p <sub>perm</sub>                                                   | PN                                         | -                 |
| -   | -                    | mm                 | mm                  | mm                       | mm                                             | mm                                                    | bar                                                                 | -                                          | kg/m              |
| 6   | RS341S00<br>RS341S12 | 6.3                | 9.5<br>10.6         |                          | 11<br>25                                       | 110                                                   | 65<br>135                                                           | 65<br>100                                  | 0.05<br>0.12      |
| 8   | RS341S00<br>RS341S12 | 8.5                | 12.0<br>13.4        | ± 0.3                    | 15<br>32                                       | 130                                                   | 25<br>150                                                           | 25<br>100                                  | 0.07<br>0.18      |
| 10  | RS341S00<br>RS341S12 | 10.3               | 14.1<br>15.5        |                          | 18<br>38                                       | 150                                                   | 16<br>90                                                            | 16<br>65                                   | 0.09<br>0.20      |
| 12  | RS341S00<br>RS341S12 | 12.5               | 16.4<br>18.0        | ± 0.2                    | 20<br>45                                       | 165                                                   | 18<br>80                                                            | 18<br>65                                   | 0.10<br>0.23      |
| 16  | RS341S00<br>RS341S12 | 16.3               | 21.4<br>23.0        | ± 0.3                    | 25<br>58                                       | 195                                                   | 13<br>65                                                            | 13<br>65                                   | 0.15<br>0.36      |
| 20  | RS341S00<br>RS341S12 | 20.7               | 26.5<br>28.1        |                          | 30<br>70                                       | 225                                                   | 20<br>40                                                            | 20<br>40                                   | 0.31<br>0.54      |
| 25  | RS341S00<br>RS341S12 | 25.8               | 31.7<br>33.7        | ± 0.4                    | 35<br>85                                       | 260                                                   | 16<br>60                                                            | 16<br>50                                   | 0.39<br>0.80      |
| 32  | RS341S00<br>RS341S12 | 34.6               | 41.0<br>43.0        |                          | 40<br>105                                      | 300                                                   | 2.5<br>35                                                           | 2.5<br>25                                  | 0.36<br>0.82      |
| 40  | RS341S00<br>RS341S12 | 40.5               | 49.5<br>51.5        | ± 0.5                    | 50<br>130                                      | 340                                                   | 3<br>40                                                             | 3<br>40                                    | 0.57<br>1.26      |
| 50  | RS341S00<br>RS341S12 | 50.8               | 60.2<br>62.5        |                          | 60<br>160                                      | 390                                                   | 2.5<br>30                                                           | 2.5<br>25                                  | 0.71<br>1.47      |
| 65  | RS341S00<br>RS341S12 | 65.7               | 77.7<br>80.9        | ± 0.4                    | 75<br>200                                      | 460                                                   | 4<br>32                                                             | 4<br>25                                    | 1.07<br>2.44      |
| 80  | RS341S00<br>RS341S12 | 80.6               | 94.2<br>97.4        | ± 0.5                    | 90<br>240                                      | 660                                                   | 4<br>30                                                             | 4<br>25                                    | 1.72<br>3.52      |
| 100 | RS341S00<br>RS341S12 | 100.4              | 115.0<br>118.2      | ± 0.6                    | 110<br>290                                     | 750                                                   | 3<br>16                                                             | 3<br>16                                    | 1.95<br>3.94      |

(HYDRA®)

# 6.3 HYDRA® annularly corrugated hoses - goods sold by the metre

# RS 531

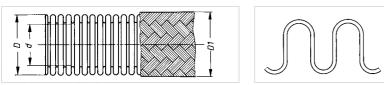


- Annularly corrugated hose made of butt-welded pipe, mechanically corrugated
- Wall thickness: increased
- Corrugation: standard
- Versions:

RS 531 S00 without braid RS 531 S12 with single braid RS 531 S22 with double braid

- Maximum production length: DN 5 - 16: 100 m
- Standard materials:

Annularly corrugated hose 1.4404 or 1.4541 braid 1.4301


Other materials are available on request.

| DN | Туре                             | Inside<br>diame-<br>ter | Outside<br>diame-<br>ter | Permis-<br>sible<br>deviation | Minimum<br>bending<br>radius<br>Single<br>bend | Nominal<br>bending<br>radius<br>Frequent<br>move-<br>ments | Permissi-<br>ble static<br>operating<br>pressure<br>at 20 °C<br>SF4 | Nominal<br>pressure<br>ISO 10380<br>SF4 | Weight<br>approx.    |
|----|----------------------------------|-------------------------|--------------------------|-------------------------------|------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|----------------------|
| -  | -                                | d                       | D,D1                     | d,D,D1                        | r <sub>min</sub>                               | r <sub>n</sub>                                             | P <sub>perm</sub>                                                   | PN                                      | -                    |
| -  | -                                | mm                      | mm                       | mm                            | mm                                             | mm                                                         | bar                                                                 | -                                       | kg/m                 |
| 5  | RS531S00<br>RS531S12<br>RS531S22 | 5,3                     | 9,1<br>10,2<br>11,3      |                               | 15<br>25<br>35                                 | 100                                                        | 25<br>150<br>200                                                    | 25<br>150<br>200                        | 0,10<br>0,14<br>0,20 |
| 6  | RS531S00<br>RS531S12<br>RS531S22 | 6,2                     | 10,2<br>11,6<br>13,0     | ± 0,2                         | 15<br>25<br>40                                 | 110                                                        | 50<br>200<br>250                                                    | 50<br>200<br>250                        | 0,12<br>0,23<br>0,33 |
| 8  | RS531S00<br>RS531S12<br>RS531S22 | 8,0                     | 12,9<br>14,5<br>16,1     |                               | 20<br>32<br>50                                 | 130                                                        | 50<br>200<br>250                                                    | 50<br>200<br>250                        | 0,20<br>0,35<br>0,49 |
| 10 | RS531S00<br>RS531S12<br>RS531S22 | 10,0                    | 15,9<br>17,5<br>19,1     |                               | 25<br>38<br>60                                 | 150                                                        | 25<br>150<br>225                                                    | 25<br>150<br>225                        | 0,29<br>0,48<br>0,66 |
| 12 | RS531S00<br>RS531S12<br>RS531S22 | 12,1                    | 18,7<br>20,3<br>21,9     | ± 0,3                         | 30<br>45<br>70                                 | 165                                                        | 25<br>100<br>200                                                    | 25<br>100<br>200                        | 0,41<br>0,62<br>0,82 |
| 16 | RS531S00<br>RS531S12<br>RS531S22 | 16,1                    | 23,8<br>25,8<br>27,8     |                               | 40<br>58<br>90                                 | 195                                                        | 20<br>150<br>200                                                    | 20<br>150<br>200                        | 0,55<br>0,92<br>1,29 |

Special designs for higher pressures are available on request.



#### RS 430



- Annularly corrugated hose made of butt-welded pipe, hydraulically shaped
- Wall thickness: increased
- Corrugation: standard
- Versions:

RS 430 S00 without braid RS 430 S12 with single braid RS 430 S22 with double braid RS 430 S42 with single braid, knurled RS 430 S52 with double braid, knurled RS 430 S92 with double special braid

 Maximum production length: DN 20 - 125: 10 m

DN 150 - 300: 3 m

Longer hose assemblies can be produced from component parts on request.

Standard materials:

annularly corrugated hose 1.4404 or 1.4541 braid, standard 1.4301, knurled 1.4306 Other materials are available on request.

# 6.3 HYDRA® annularly corrugated hoses - goods sold by the metre

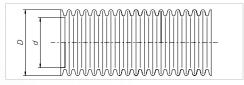
| DN  | Туре     | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum       | Nominal   | Permissi-<br>ble static  | Nominal          | Weight  |
|-----|----------|--------------------|---------------------|--------------------------|---------------|-----------|--------------------------|------------------|---------|
|     |          | diameter           | diameter            | deviation                | bending       | bending   |                          | pressure         | approx. |
|     |          |                    |                     |                          | radius        | radius    | operating<br>pressure at | ISO 10380<br>SF4 |         |
|     |          |                    |                     |                          | Single bend   | Frequent  | 20 °C                    | 364              |         |
|     |          |                    |                     |                          | Sillyle bellu | movements | SF4                      |                  |         |
| -   | -        | d                  | D.D1                | d,D,D1                   | ſmin          | Γn        | Pperm                    | PN               |         |
| -   | -        | mm                 | mm                  | mm                       | mm            | mm        | bar                      | -                | kg/m    |
| 20  | RS430S00 | 20.2               | 29.2                |                          | 45            | 285       | 6                        | 6                | 0.54    |
|     | RS430S12 |                    | 31.2                |                          | 70            |           | 90                       | 65               | 0.93    |
|     | RS430S22 |                    | 33.2                |                          | 70            |           | 125                      | 100              | 1.31    |
| 25  | RS430S00 | 25.2               | 34.2                | ± 0.3                    | 50            | 325       | 6                        | 6                | 0.65    |
|     | RS430S12 |                    | 36.2                |                          | 85            |           | 65                       | 50               | 1.07    |
|     | RS430S22 |                    | 38.2                |                          | 85            |           | 100                      | 100              | 1.49    |
| 32  | RS430S00 | 33.7               | 42.7                |                          | 60            | 380       | 4                        | 4                | 0.77    |
|     | RS430S12 |                    | 45.0                |                          | 105           |           | 65                       | 65               | 1.41    |
|     | RS430S22 |                    | 47.2                |                          | 105           |           | 80                       | 80               | 2.05    |
| 40  | RS430S00 | 40.0               | 55.0                |                          | 75            | 430       | 2.5                      | 2.5              | 1.37    |
|     | RS430S12 |                    | 57.3                |                          | 130           |           | 40                       | 40               | 2.09    |
|     | RS430S22 |                    | 59.5                |                          | 130           |           | 65                       | 65               | 2.81    |
| 50  | RS430S00 | 50.0               | 65.0                | ± 0.4                    | 90            | 490       | 2.5                      | 2.5              | 1.61    |
|     | RS430S12 |                    | 68.2                |                          | 160           |           | 50                       | 50               | 2.91    |
|     | RS430S22 |                    | 71.3                |                          | 160           |           | 80                       | 65               | 4.15    |
| 65  | RS430S00 | 65.0               | 81.0                |                          | 110           | 580       | 0.5                      | 0.5              | 2.06    |
|     | RS430S12 |                    | 84.2                |                          | 200           |           | 35                       | 25               | 3.46    |
|     | RS430S22 |                    | 87.3                |                          | 200           |           | 50                       | 50               | 4.89    |
| 80  | RS430S00 | 79.8               | 98.3                | ± 0.5                    | 135           | 800       | 0.5                      | 0.5              | 2.82    |
|     | RS430S12 |                    | 101.5               |                          | 240           |           | 25                       | 16               | 4.65    |
|     | RS430S22 |                    | 104.6               |                          | 240           |           | 50                       | 25               | 6.46    |
| 100 | RS430S00 | 99.8               | 117.8               |                          | 160           | 1000      | 0.5                      | 0.5              | 3.59    |
|     | RS430S12 |                    | 121.0               |                          | 290           |           | 30                       | 10               | 5.97    |
|     | RS430S22 |                    | 124.1               |                          | 290           |           | 40                       | 16               | 8.25    |
| 125 | RS430S00 | 125.6              | 146.0               | ± 0.6                    | 350           | 1250      | 0.5                      | 0.5              | 5.23    |
|     | RS430S12 |                    | 149.2               |                          |               |           | 16                       | 10               | 7.80    |
|     | RS430S22 |                    | 152.4               |                          |               |           | 30                       | 16               | 10.30   |
| 150 | RS430S00 | 151.9              | 177.4               | ± 1.4                    | 400           | 800       | 0.2                      | -                | 4.97    |
|     | RS430S12 |                    | 180.6               |                          |               |           | 6                        | 6                | 8.10    |
|     | RS430S42 |                    | 181.4               |                          |               |           | 10                       | 10               | 8.27    |
|     | RS430S22 |                    | 183.7               |                          |               |           | 12                       | 10               | 11.20   |
| 000 | RS430S92 | 000.0              | 184.6               |                          |               | 4400      | 16                       | 16               | 11.37   |
| 200 | RS430S00 | 202.2              | 231.4               |                          | 520           | 1100      | 0.2                      | -                | 7.92    |
|     | RS430S12 |                    | 235                 |                          |               |           | 6                        | 6                | 12.32   |
|     | RS430S42 |                    | 236.9               |                          |               |           | 10                       | 10               | 12.42   |
|     | RS430S22 |                    | 238.5               |                          |               |           | 12                       | 10               | 16.72   |
|     | RS430S92 |                    | 239.7               |                          |               |           | 16                       | 16               | 16.82   |
|     | RS430S52 |                    | 242.4               |                          |               | 1050      | 16                       | 16               | 16.92   |
|     | RS430S00 | 248.4              | 284.2               | ± 1.6                    | 620           | 1350      | 0.2                      | -                | 13.0    |
| 250 | RS430S42 |                    | 289.7               |                          |               |           | 8                        | 6                | 17.96   |
| 000 | RS430S52 | 002.2              | 295.2               |                          | 4000          | 1000      | 12                       | 10               | 22.96   |
| 300 | RS430S00 | 298.6              | 335.8               |                          | 1000          | 1600      | 0.1                      | -                | 17.20   |
|     | RS430S42 |                    | 341.3               |                          |               |           | 4                        | 4                | 23.03   |
|     | RS430S52 |                    | 346.8               |                          |               |           | 6                        | 6                | 28.83   |

(HYDRA®)

(HYDRA)

# 

- Annularly corrugated hose made of butt-welded pipe, mechanically corrugated
- Wall thickness / corrugation: standard
- Versions:
   RZ 331 S00 without braid
   RZ 331 S13 with single braid
- Maximum production length: DN 8 - 25: 50 m DN 32 : 30 m DN 40 - 50: 8 m
- Standard materials: annularly corrugated hose 2.1010 (CuSn2) braiding 2.1016 (CuSn4)


RZ 331 - Bronze annularly corrugated hoses

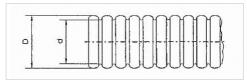
# 6.3 HYDRA® annularly corrugated hoses - goods sold by the metre

| DN | Туре     | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum<br>bending<br>radius<br>Single bend | Nominal<br>bending<br>radius<br>Frequent<br>movements | Nominal<br>pressure<br>DIN EN<br>ISO 10380<br>SF4 | Weight<br>approx. |
|----|----------|--------------------|---------------------|--------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------|
| -  | -        | d                  | D,D1                | d,D,D1                   | r <sub>min</sub>                            | r <sub>n</sub>                                        | PN                                                | -                 |
| -  | -        | mm                 | mm                  | mm                       | mm                                          | mm                                                    | -                                                 | kg/m              |
| 8  | RZ331S00 | 8.6                | 12.6                |                          | 16                                          | 90                                                    | 6                                                 | 0.11              |
|    | RZ331S13 |                    | 14.0                |                          | 32                                          |                                                       | 60                                                | 0.23              |
| 10 | RZ331S00 | 10.7               | 15.1                |                          | 18                                          | 130                                                   | 6                                                 | 0.13              |
|    | RZ331S13 |                    | 16.5                |                          | 38                                          |                                                       | 45                                                | 0.27              |
| 12 | RZ331S00 | 12.7               | 17.7                | ± 0.2                    | 20                                          | 150                                                   | 4                                                 | 0.14              |
|    | RZ331S13 |                    | 19.1                |                          | 45                                          |                                                       | 35                                                | 0.31              |
| 16 | RZ331S00 | 16.7               | 22.2                |                          | 28                                          | 170                                                   | 4                                                 | 0.24              |
|    | RZ331S13 |                    | 23.6                |                          | 58                                          |                                                       | 32                                                | 0.47              |
| 20 | RZ331S00 | 20.6               | 27.1                |                          | 32                                          | 200                                                   | 4                                                 | 0.44              |
|    | RZ331S13 |                    | 28.5                |                          | 70                                          |                                                       | 30                                                | 0.71              |
| 25 | RZ331S00 | 25.6               | 33.2                |                          | 40                                          | 230                                                   | 2.5                                               | 0.46              |
|    | RZ331S13 |                    | 35.5                |                          | 85                                          |                                                       | 30                                                | 0.97              |
| 32 | RZ331S00 | 32.6               | 42.0                | ± 0.3                    | 50                                          | 260                                                   | 2.5                                               | 0.72              |
|    | RZ331S13 |                    | 44.3                |                          | 105                                         |                                                       | 30                                                | 1.43              |
| 40 | RZ331S00 | 40.5               | 52.0                |                          | 60                                          | 310                                                   | 1.6                                               | 0.95              |
|    | RZ331S13 |                    | 54.0                |                          | 130                                         |                                                       | 25                                                | 1.83              |
| 50 | RZ331S00 | 50.5               | 63.0                | ± 0.4                    | 70                                          | 360                                                   | 1.6                                               | 1.35              |
|    | RZ331S13 |                    | 66.2                |                          | 160                                         |                                                       | 28                                                | 2.77              |



# RS 351 - Semi-flexible annularly corrugated hoses



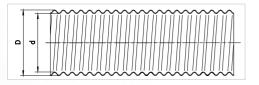

- Semi-flexible annularly corrugated hose, mechanically corrugated
- Wall thickness: standard
- Corrugation: very wide
- Versions: RS 351 S00 without braid
- Maximum production length:
- DN 12 25: 100 m
- Standard material:
  - 1.4404

| DN | Туре     | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum<br>bending<br>radius<br>Single bend | Permis-<br>sible<br>operating<br>pressure<br>at 20 °C | Weight<br>approx. |
|----|----------|--------------------|---------------------|--------------------------|---------------------------------------------|-------------------------------------------------------|-------------------|
| -  | -        | d                  | D                   | d,D                      | r <sub>min</sub>                            | P <sub>perm</sub>                                     | -                 |
| -  | -        | mm                 | mm                  | mm                       | mm                                          | bar                                                   | kg/m              |
| 12 | RS351S00 | 12.5               | 16.6                | ± 0.3                    | 20                                          | 18                                                    | 0.095             |
| 16 | RS351S00 | 16.7               | 21.3                | ± 0.3                    | 16                                          | 17                                                    | 0.125             |
| 20 | RS351S00 | 20.5               | 26.4                | ± 0.4                    | 20                                          | 9                                                     | 0.165             |
| 25 | RS351S00 | 25.8               | 31.7                | ± 0.4                    | 35                                          | 10                                                    | 0.36              |

The RS 351 is a semi-flexible hose and is primarily designed for static applications. This type of hose is not be used for the absorption of repeated movements and vibrations. The RS 351 is optimised for self-assembly fittings.

# 6.3 HYDRA® annularly corrugated hoses - goods sold by the metre

IX 331 - Semi-flexible annularly corrugated hoses




- Semi-flexible annularly corrugated hose, mechanically corrugated
- Wall thickness: standard
- Versions: IX 331 S00 without braid
- Maximum production length: DN 12 - 25: 100 m
- Standard material: 1.4404
- Corrugation: flat

| DN | Туре     | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum<br>bending<br>radius<br>Single bend | Permis-<br>sible<br>operating<br>pressure<br>at 20 °C | Weight<br>approx. |
|----|----------|--------------------|---------------------|--------------------------|---------------------------------------------|-------------------------------------------------------|-------------------|
| -  | -        | d                  | D                   | d,D                      | r <sub>min</sub>                            | p <sub>perm</sub>                                     | -                 |
| -  | -        | mm                 | mm                  | mm                       | mm                                          | bar                                                   | kg/m              |
| 12 | IX331S00 | 12.3               | 15.8                | ± 0.25                   | 32                                          | 34                                                    | 0.10              |
| 16 | IX331S00 | 16.5               | 20.4                | ± 0.25                   | 40                                          | 18                                                    | 0.12              |
| 20 | IX331S00 | 20.6               | 24.9                | ± 0.3                    | 50                                          | 18                                                    | 0.155             |
| 25 | IX331S00 | 25.6               | 30.7                | ± 0.3                    | 60                                          | 16                                                    | 0.245             |

The IX 331 is a semi-flexible hose and is **exclusively** designed for static applications. This type of hose is not to be used for the absorption of repeated movements and vibrations. The IX 331 is optimised of self-assembly fittings.

# ME 539 - semi-flexible helical corrugated hoses



- Semi-flexible helical corrugated hoses, mechanically corrugated
- Wall thickness: increased
- Corrugation: very wide
- Versions: ME 539 S00 without braid
- Maximum production length: DN 25: 350 m
   DN 32: 300 m
   DN 40: 300 m
   DN 50: 200 m
   Standard material:

1.4404

| DN | Туре     | Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Minimum<br>bending<br>radius<br>Single bend | Permis-<br>sible<br>operating<br>pressure<br>at 20 °C | Weight<br>approx. |
|----|----------|--------------------|---------------------|--------------------------|---------------------------------------------|-------------------------------------------------------|-------------------|
| -  | -        | d                  | D                   | d,D                      | r <sub>min</sub>                            | P <sub>perm</sub>                                     | -                 |
| -  | -        | mm                 | mm                  | mm                       | mm                                          | bar                                                   | kg/m              |
| 25 | ME539S00 | 32                 | 35,2                | ± 0,5                    | on request                                  | 16                                                    | 0,335             |
| 32 | ME539S00 | 40                 | 44,8                | ± 0,5                    | on request                                  | 16                                                    | 0,55              |
| 40 | ME539S00 | 49                 | 54,8                | ± 0,5                    | on request                                  | 16                                                    | 0,85              |
| 50 | ME539S00 | 61                 | 66,6                | ± 0,5                    | on request                                  | 16                                                    | 0,995             |

The ME 539 is a semi-flexible hose and is primarily designed for static applications. This type of hose is not be used for the absorption of repeated movements and vibrations. The ME 539 is intended for self-assembly fittings. Corresponding connecting components on request.

# 6.4 Connection fittings

# Connection fittings for HYDRA® corrugated hoses

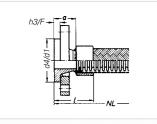
A wide range of connections are available for HYDRA metal hoses. Depending on the operating conditions and the materials used, the hose and connector can be connected using fusion welding or brazing. A selection of common connection types is given below. The connection types are labelled according to the first two letters of the type designation of the individual hose assembly:

### Flanged joints:

A: Loose flange with welding collar B: Loose flange with collar connection piece C: Loose flange with welding rim swivel flange G: Welding neck flange

Threaded connections: L: Internal thread, fixed M: External thread, fixed N: Internal thread, swivel

Screw connections: Q: Internal thread R: External thread S: Pipe end


Pipe connection: U: All types of pipe fittings

Couplings: W: All types of couplings



# **Connection fittings corrugated hoses**

Type AB12, type AB22, type AB82



# Flange connection, swivelling

Welding collar: steel or stainless steel 1.4541 or 1.4571 Loose flange: steel or stainless steel 1.4541 or 1.4571 Welded or brazed

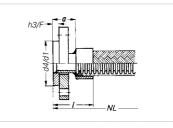
| (     | Connection | fitting type | 9     | Mat                 | erial           | Permissible           |
|-------|------------|--------------|-------|---------------------|-----------------|-----------------------|
| PN 10 | PN 16      | PN 25        | PN 40 | Welding neck Flange |                 | operating temperature |
| AB12D | AB12E      | AB12F        | AB12G | Steel               | Steel           | 480 °C*               |
| AB82D | AB82E      | AB82F        | AB82G | Stainless steel     | Steel           | 480 °C*               |
| AB22D | AB22E      | AB22F        | AB22G | Stainless steel     | Stainless steel | 550 °C                |

# Dimensions in mm, weight G in kg

| DN              | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 65   | 80   | 100  | 125  | 150  | 200  | 250  | 300  |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| d4 / d1         | 40   | 45   | 58   | 68   | 78   | 88   | 102  | 122  | 138  | 158  | 188  | 212  | 268  | 320  | 370  |
| h3 (DIN 2673)   | 10   | 10   | 12   | 12   | 12   | 12   | 14   | 14   | 16   | 16   | 18   | 18   | 20   | 22   | 22   |
| F (DIN EN 1092) | 12   | 12   | 14   | 14   | 14   | 14   | 16   | 16   | 16   | 18   | 18   | 20   | 20   | 22   | 22   |
| a (DIN 2673)    | 35   | 35   | 40   | 40   | 40   | 40   | 45   | 45   | 50   | 50   | 50   | 50   | 55   | 60   | 60   |
| a (DIN EN 1092) | 35   | 38   | 40   | 40   | 42   | 45   | 45   | 45   | 50   | 52   | 55   | 55   | 62   | 68   | 68   |
| I (DIN 2673)    | 45   | 49   | 56   | 58   | 60   | 62   | 70   | 73   | 80   | 82   | 86   | 90   | 100  | 110  | 115  |
| I (DIN EN 1092) | 45   | 52   | 56   | 58   | 62   | 67   | 70   | 73   | 80   | 84   | 91   | 95   | 107  | 118  | 123  |
| G approx.       | 0.70 | 0.80 | 1.06 | 1.43 | 2.05 | 2.40 | 3.02 | 3.77 | 4.84 | 5.60 | 7.35 | 8.90 | 12.9 | 17.7 | 23.3 |

Connection dimensions PN 10 as per DIN 2501 / DIN EN 1092

\* Applicable materials: see chapter 7.2


When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

(HYDRA®)

# 6.4 Connection fittings

# **Connection fittings corrugated hoses**

Type BB12, type BB22, type BB82

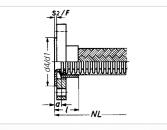


Flange connection, swivelling

Collar pipe: steel or stainless steel 1.4541 or 1.4571 Loose flange: steel or stainless steel 1.4541 or 1.4571 Welded or brazed

| 1 | (     | Connection | fitting type | Ð     | Mat             | erial           | Permissible           |  |  |  |
|---|-------|------------|--------------|-------|-----------------|-----------------|-----------------------|--|--|--|
|   | PN 10 | PN 16      | PN 25        | PN 40 | Collar pipe     | Flange          | operating temperature |  |  |  |
|   | BB12D | BB12E      | BB12F        | BB12G | Steel           | Steel           | 480 °C*               |  |  |  |
|   | BB82D | BB82E      | BB82F        | BB82G | Stainless steel | Steel           | 480 °C*               |  |  |  |
| ĺ | BB22D | BB22E      | BB22F        | BB22G | Stainless steel | Stainless steel | 550 °C                |  |  |  |

#### Dimensions in mm, weight G in kg


| DN              | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 65   | 80   | 100  | 125  | 150  | 200  | 250  | 300  |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| d4 / d1         | 40   | 45   | 58   | 68   | 78   | 88   | 102  | 122  | 138  | 158  | 188  | 212  | 268  | 320  | 370  |
| h3 (DIN 2642)   | 10   | 10   | 12   | 12   | 12   | 12   | 14   | 14   | 16   | 16   | 18   | 18   | 20   | 22   | 22   |
| F (DIN EN 1092) | 12   | 12   | 14   | 14   | 14   | 14   | 16   | 16   | 16   | 18   | 18   | 20   | 20   | 22   | 22   |
| a (DIN 2642)    | 45   | 45   | 46   | 51   | 51   | 51   | 57   | 57   | 63   | 68   | 79   | 79   | 85   | 85   | 90   |
| a (DIN EN 1092) | 46   | 46   | 57   | 52   | 52   | 52   | 58   | 58   | 63   | 69   | 79   | 80   | 85   | 85   | 90   |
| I (DIN 2642)    | 55   | 59   | 62   | 69   | 71   | 73   | 82   | 85   | 93   | 100  | 115  | 119  | 130  | 135  | 145  |
| I (DIN EN 1092) | 56   | 60   | 63   | 70   | 72   | 74   | 83   | 86   | 93   | 101  | 115  | 120  | 130  | 135  | 145  |
| G approx.       | 0.72 | 0.84 | 1.08 | 1.48 | 2.13 | 2.46 | 3.08 | 3.90 | 5.00 | 5.75 | 8.00 | 9.80 | 13.5 | 18.4 | 24.3 |

Connection dimensions PN 10 as per DIN 2501 / DIN EN 1092

\* Applicable materials: see chapter 7.2

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

Type CA22, type CA82



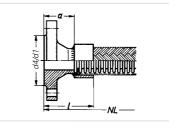
Flange connection, swivelling Welding rim: stainless steel 1.4541 or 1.4571 Loose flange: steel or stainless steel 1.4541 or 1.4571 Welded or brazed

| Connection | fitting type      | Mat             | Permissible     |                       |
|------------|-------------------|-----------------|-----------------|-----------------------|
| PN 10      | PN 16 (to DN 150) | Welding rim     | Flange          | operating temperature |
| CA82D      | CA82E             | Stainless steel | Steel           | 480 °C*               |
| CA22D      | CA22E             | Stainless steel | Stainless steel | 550 °C                |

Dimensions in mm, weight G in kg

| DN               | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 65   | 80   | 100  | 125  | 150  | 200 | 250  | 300  |
|------------------|------|------|------|------|------|------|------|------|------|------|------|------|-----|------|------|
| d4 / d1          | 40   | 45   | 58   | 68   | 78   | 88   | 102  | 122  | 138  | 158  | 188  | 212  | 268 | 320  | 370  |
| s2 (DIN 2642)    | 3    | 3    | 3    | 3,5  | 3,5  | 3,5  | 3,5  | 3,5  | 4    | 4    | 4    | 4    | 4   | 5    | 5    |
| F (DIN EN 1092)  | 2,5  | 2,5  | 3    | 3    | 3    | 3    | 4    | 4    | 4    | 4    | 4    | 4    | 5   | -    | -    |
| a (DIN 2642)     | 9    | 9    | 12   | 15   | 15   | 17   | 23   | 23   | 23   | 28   | 30   | 30   | 30  | 30   | 35   |
| H5 (DIN EN 1092) | 7    | 7    | 8    | 10   | 12   | 15   | 20   | 20   | 25   | 25   | 25   | 25   | 30  | -    | -    |
| I (DIN 2673)     | 19   | 23   | 28   | 33   | 35   | 39   | 48   | 51   | 53   | 60   | 66   | 70   | 75  | 80   | 90   |
| I (DIN EN 1092)  | 17   | 21   | 24   | 28   | 32   | 37   | 45   | 48   | 55   | 57   | 61   | 65   | 75  | -    | -    |
| G approx.        | 0.63 | 0.71 | 0.84 | 1.15 | 1.68 | 1.90 | 2.21 | 2.88 | 3.55 | 3.86 | 4.95 | 6.00 | 8.2 | 11.0 | 13.7 |

Connection dimensions PN 10 as per DIN 2501 / DIN EN 1092


\* Applicable materials: see chapter 7.2

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

## 6.4 Connection fittings

## **Connection fittings corrugated hoses**

Type GB12, type GB22



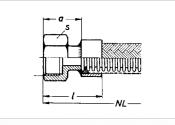
Flange connection, fixed

Welding neck flange steel or stainless steel 1.4541 or 1.4571 Welded or brazed

|       | Connection | fitting type |       | Material        | Permissible           |
|-------|------------|--------------|-------|-----------------|-----------------------|
| PN 10 | PN 16      | PN 25        | PN 40 | Flange          | operating temperature |
| GB12D | GB12E      | GB12F        | GB12G | Steel           | 480 °C*               |
| GB22D | GB22E      | GB22F        | GB22G | Stainless steel | 550 °C                |

## Dimensions in mm, weight G in kg

| DN              | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 65   | 80   | 100  | 125  | 150  | 200  | 250  | 300  |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| d4 / d1         | 40   | 45   | 58   | 68   | 78   | 88   | 102  | 122  | 138  | 158  | 188  | 212  | 268  | 320  | 370  |
| a (DIN 2632)    | 35   | 35   | 38   | 38   | 40   | 42   | 45   | 45   | 50   | 52   | 55   | 55   | 62   | 68   | 68   |
| a (DIN EN 1092) | 35   | 38   | 40   | 40   | 42   | 45   | 45   | 45   | 50   | 52   | 55   | 55   | 62   | 68   | 68   |
| I (DIN 2632)    | 45   | 49   | 54   | 56   | 60   | 64   | 70   | 73   | 80   | 84   | 91   | 95   | 107  | 118  | 123  |
| I (DIN EN 1092) | 45   | 52   | 56   | 58   | 62   | 67   | 70   | 73   | 80   | 84   | 91   | 95   | 107  | 118  | 123  |
| G approx.       | 0.60 | 0.67 | 1.00 | 1.20 | 1.76 | 2.00 | 2.66 | 3.30 | 3.95 | 4.95 | 6.75 | 8.35 | 12.4 | 16.1 | 20.0 |


Connection dimensions PN 10 as per DIN 2501 / DIN EN 1092

\* Applicable materials: see chapter 7.2

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.



Type LA12S, type LA22S, type LA52S

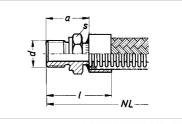


#### Threaded connection, fixed

Hexagon socket with Whitworth pipe thread DIN EN 10226 (ISO 7/1) Made of steel, stainless steel 1.4541 or 1.4571 or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |
|-------------------------|-----------------|-----------------------------------|
| LA12S                   | Steel           | 300 °C                            |
| LA22S                   | Stainless steel | 550 °C                            |
| LA52S                   | Brass           | 250 °C                            |

Dimensions in mm, weight G in kg


| PN           |      |      |                   | 100  |      |      |      |      | 63   |      | 40   |      |  |
|--------------|------|------|-------------------|------|------|------|------|------|------|------|------|------|--|
| DN           | 6    | 8    | 10                | 12   | 16   | 20   | 25   | 32   | 40   | 50   | 65   | 80   |  |
| d            | R1⁄4 | R1⁄4 | R <sup>3</sup> /8 | R1/2 | R½   | R3⁄4 | R1   | R1¼  | R1½  | R2   | R2½  | R3   |  |
| а            | 19   | 19   | 21                | 24   | 24   | 27   | 31   | 34   | 36   | 42   | 49   | 54   |  |
| I            | 27   | 29   | 31                | 36   | 38   | 43   | 49   | 54   | 58   | 67   | 77   | 84   |  |
| S            | 17   | 17   | 22                | 24   | 24   | 32   | 41   | 46   | 55   | 65   | 85   | 100  |  |
| G<br>approx. | 0.02 | 0.03 | 0.04              | 0.06 | 0.07 | 0.10 | 0.19 | 0.22 | 0.31 | 0.41 | 0.86 | 1.22 |  |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

## 6.4 Connection fittings

## **Connection fittings corrugated hoses**

Type MA12S, type MA22S, type MA52S

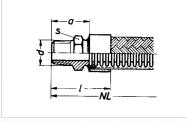


Threaded connection, fixed

Hexagon nipple with Whitworth pipe thread ISO 228/1 Made of steel, stainless steel 1.4541 or 1.4571 or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |
|-------------------------|-----------------|-----------------------------------|
| MA12S                   | Steel           | 300 °C                            |
| MA22S                   | Stainless steel | 550 °C                            |
| MA52S                   | Brass           | 250 °C                            |

Dimensions in mm, weight G in kg


| PN           |      | 25    | 50                 |      | 16    | 60    |     | 100  |      | 63 40 |        |      |      |
|--------------|------|-------|--------------------|------|-------|-------|-----|------|------|-------|--------|------|------|
| DN           | 6    | 8     | 10                 | 12   | 16    | 20    | 25  | 32   | 40   | 50    | 65     | 80   | 100  |
| d            | G¼A  | G1⁄4A | G <sup>3</sup> /8A | G½A  | G1⁄2A | G3⁄4A | G1A | G1¼A | G1½A | G2A   | G21⁄2A | G3A  | G4A  |
| а            | 24   | 25    | 25                 | 29   | 29    | 32    | 38  | 40   | 43   | 45    | 52     | 54   | 64   |
| I            | 32   | 35    | 35                 | 41   | 43    | 48    | 56  | 60   | 65   | 70    | 78     | 84   | 96   |
| s            | 19   | 19    | 22                 | 27   | 27    | 32    | 41  | 50   | 55   | 70    | 85     | 100  | 120  |
| G<br>approx. | 0.04 | 0.04  | 0.06               | 0.08 | 0.08  | 0.12  | 0.2 | 0.29 | 0.32 | 0.47  | 0.75   | 0.85 | 1.35 |

When ordering, please specify: connection fitting type, nominal width (DN), operating temperature, in case of stainless steel material no.

Also available with metric fine thread on request.



Connection fittings corrugated hoses Type MH02S

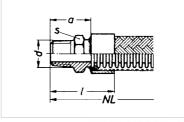


Threaded connection, fixed

Hexagon nipple with Whitworth pipe thread DIN EN10226 (ISO 7/1) Made of malleable iron

#### Brazed

| Connection fitting type | Permissible operating temperature | Permissible operating pressure |  |  |  |  |
|-------------------------|-----------------------------------|--------------------------------|--|--|--|--|
| MH02S                   | Chapter 7.3                       | Chapter 7.3                    |  |  |  |  |


#### Dimensions in mm, weight G in kg

| DN           | 10                | 12   | 16   | 20   | 25   | 32   | 40   | 50   | 65    | 80   |
|--------------|-------------------|------|------|------|------|------|------|------|-------|------|
| d            | R <sup>3</sup> /8 | R1⁄2 | R1⁄2 | R3⁄4 | R1   | R1¼  | R1½  | R2   | R21/2 | R3   |
| а            | 32                | 35   | 35   | 39   | 42   | 45   | 48   | 52   | 55    | 60   |
| - I          | 42                | 47   | 49   | 55   | 60   | 65   | 70   | 77   | 83    | 90   |
| s            | 22                | 28   | 28   | 32   | 42   | 50   | 55   | 70   | 85    | 100  |
| G<br>approx. | 0.06              | 0.08 | 0.08 | 0.12 | 0.18 | 0.26 | 0.29 | 0.49 | 0.85  | 1.26 |

#### 6.4 Connection fittings

#### **Connection fittings corrugated hoses**

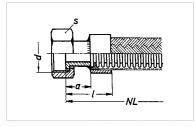
Type MH12S, type MH22S, type MH52S



Threaded connection, fixed

Hexagon nipple with Whitworth pipe thread DIN EN 10226 (ISO 7/1) Made of steel, stainless steel 1.4541 or 1.4571 or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|--|--|
| MH12S                   | Steel           | 300 °C                            |  |  |  |  |
| MH22S                   | Stainless steel | 550 °C                            |  |  |  |  |
| MH52S                   | Brass           | 250 °C                            |  |  |  |  |


# Dimensions in mm, weight G in kg

| PN           |      |      |                   | 100  |      |      |      |      | 63   |      | 40   |      |  |
|--------------|------|------|-------------------|------|------|------|------|------|------|------|------|------|--|
| DN           | 6    | 8    | 10                | 12   | 16   | 20   | 25   | 32   | 40   | 50   | 65   | 80   |  |
| d            | R1⁄4 | R1⁄4 | R <sup>3</sup> /8 | R1/2 | R1/2 | R3⁄4 | R1   | R1¼  | R1½  | R2   | R2½  | R3   |  |
| а            | 24   | 24   | 25                | 29   | 29   | 32   | 38   | 40   | 40   | 47   | 52   | 56   |  |
| I            | 32   | 34   | 35                | 41   | 43   | 48   | 56   | 60   | 62   | 72   | 80   | 86   |  |
| s            | 14   | 14   | 17                | 22   | 22   | 27   | 36   | 46   | 50   | 60   | 80   | 90   |  |
| G<br>approx. | 0.02 | 0.03 | 0.04              | 0.05 | 0.06 | 0.09 | 0.14 | 0.23 | 0.25 | 0.43 | 0.65 | 0.75 |  |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.



Type NA12S, type NA22S, type NA52S



#### Threaded connection, swivelling

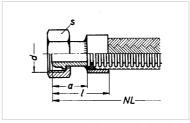
Collar pipe, flat sealing, union nut with Whitworth pipe thread ISO 228/1 made of steel, stainless steel 1.4541 or 1.4571 or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| NA12S                   | Steel           | 300 °C                            |  |  |
| NA22S                   | Stainless steel | 550 °C                            |  |  |
| NA52S                   | Brass           | 250 °C                            |  |  |

## NA12S, NA22S: dimensions in mm, weight G in kg

| PN           |      |                   | 100  |                   |      | 63   |      |      |      | 40   |
|--------------|------|-------------------|------|-------------------|------|------|------|------|------|------|
| DN           | 6    | 8                 | 10   | 12                | 16   | 20   | 25   | 32   | 40   | 50   |
| d            | G1⁄4 | G <sup>3</sup> /8 | G1⁄2 | G <sup>5</sup> /8 | G3⁄4 | G1   | G1¼  | G1½  | G1¾  | G2¼  |
| а            | 20   | 21                | 21   | 24                | 24   | 24   | 26   | 26   | 29   | 29   |
| Ι            | 28   | 31                | 31   | 36                | 38   | 40   | 44   | 46   | 51   | 54   |
| s            | 17   | 22                | 27   | 27                | 32   | 41   | 50   | 55   | 65   | 75   |
| G<br>approx. | 0.03 | 0.04              | 0.07 | 0.08              | 0.10 | 0.15 | 0.25 | 0.28 | 0.49 | 0.54 |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.


## NA52S:

PN 25 for all DN, other dimensions, see table NA12S, NA22S

## 6.4 Connection fittings

#### **Connection fittings corrugated hoses**

Type NF12S, type NF22S, type NF52S



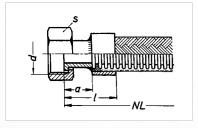
Threaded connection, swivelling

Ball lining as per DIN 3863, union nut with Whitworth pipe thread ISO 228/1 made of steel, stainless steel 1.4541 or 1.4571 or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| NF12S                   | Steel           | 300 °C                            |  |  |
| NF22S                   | Stainless steel | 550 °C                            |  |  |
| NF52S                   | Brass           | 250 °C                            |  |  |

## NF12S, NF22S: dimensions in mm, weight G in kg

| PN      |      |                   | 100  |                   |      | 63   |      |      |      | 40    |
|---------|------|-------------------|------|-------------------|------|------|------|------|------|-------|
| DN      | 6    | 8                 | 10   | 12                | 16   | 20   | 25   | 32   | 40   | 50*   |
| d       | G1⁄4 | G <sup>3</sup> /8 | G1⁄2 | G <sup>5</sup> /8 | G3⁄4 | G1   | G1¼  | G1½  | G1¾  | G21⁄4 |
| а       | 24   | 24                | 24   | 29                | 29   | 29   | 31   | 31   | 31   | 34    |
| 1       | 32   | 34                | 34   | 41                | 43   | 45   | 49   | 51   | 53   | 59    |
| S       | 17   | 22                | 27   | 27                | 32   | 41   | 50   | 55   | 65   | 75    |
| G       | 0.03 | 0.04              | 0.07 | 0.08              | 0.10 | 0.15 | 0.28 | 0.29 | 0.47 | 0.58  |
| approx. |      |                   |      |                   |      |      |      |      |      |       |


\* DN 50 is not standardised! When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

#### NF52S:

PN 25 for all DN, other dimensions see table NF12S, NF22S



Type NI12S, type NI22S, type NI52S



#### Threaded connection, swivelling

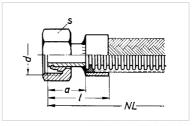
Collar pipe, flat sealing, union nut with metric thread DIN 3870, series LL, made of steel, stainless steel 1.4541 or 1.4571 or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| NI12S                   | Steel           | 300 °C                            |  |  |
| NI22S                   | Stainless steel | 550 °C                            |  |  |
| NI52S                   | Brass           | 250 °C                            |  |  |

## NI12S, NI22S: dimensions in mm, weight G in kg

| PN           |         |         | 100     |         |         | 63      |         |         |         | 40    |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| DN           | 6       | 8       | 10      | 12      | 16      | 20      | 25      | 32      | 40      | 50    |
| d            | M14x1.5 | M16x1.5 | M18x1.5 | M22x1.5 | M26x1.5 | M30x1.5 | M38x1.5 | M45x1.5 | M52x1.5 | M65x2 |
| а            | 20      | 21      | 21      | 24      | 24      | 24      | 26      | 26      | 29      | 29    |
| I            | 28      | 31      | 31      | 36      | 38      | 40      | 44      | 46      | 51      | 54    |
| s            | 17      | 19      | 22      | 27      | 32      | 36      | 46      | 50      | 60      | 75    |
| G<br>approx. | 0.03    | 0.04    | 0.05    | 0.07    | 0.10    | 0.12    | 0.19    | 0.28    | 0.34    | 0.45  |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.


#### NI52S:

PN 25 for all DN, other dimensions see table NI12S, NI22S

#### 6.4 Connection fittings

## **Connection fittings corrugated hoses**

Type NL12Q, type NL22Q



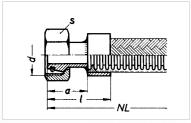
Threaded connection, swivelling

Precision pipe with cutting ring DIN 3861, DIN EN ISO 8434-1 Union nut with metric thread according to DIN EN ISO 8434-1, series L Made of steel or stainless steel 1.4541 or 1.4571 (union nut 1.4571), Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| NL12Q                   | Steel           | 300 °C                            |  |  |
| NL220                   | Stainless steel | 400 °C                            |  |  |

## Dimensions in mm, weight G in kg

| PN                 |         |         | 2       | 50      |         | 16      | 50    | 100   |       |       |
|--------------------|---------|---------|---------|---------|---------|---------|-------|-------|-------|-------|
| DN                 | 4       | 6       | 8       | 10      | 12      | 16      | 20    | 25    | 32    | 40    |
| Pipe<br>dimensions | 6x1     | 8x1     | 10x1.5  | 12x1.5  | 15x2    | 18x1.5  | 22x2  | 28x2  | 35x2  | 42x3  |
| d                  | M12x1.5 | M14x1.5 | M16x1.5 | M18x1.5 | M22x1.5 | M26x1.5 | M30x2 | M36x2 | M45x2 | M52x2 |
| а                  | 28      | 28      | 30      | 30      | 32      | 32      | 36    | 40    | 45    | 45    |
| I                  | 36      | 36      | 40      | 40      | 44      | 46      | 52    | 58    | 65    | 67    |
| S                  | 14      | 17      | 19      | 22      | 27      | 32      | 36    | 41    | 50    | 60    |
| G approx.          | 0.04    | 0.04    | 0.04    | 0.06    | 0.09    | 0.11    | 0.16  | 0.21  | 0.31  | 0.44  |


When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.



## 6.4 Connection fittings

#### **Connection fittings corrugated hoses**

Type NN12Q, type NN22Q,



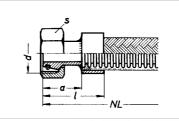
Threaded connection, swivelling 24° sealing cone with O-ring\*, union nut DIN ISO 12151-2, series L made of steel or stainless steel 1.4541 or 1.4571 (union nut 1.4571), welded or brazed

| Connection fitting type | Mat                 | Permissible operating |                 |  |
|-------------------------|---------------------|-----------------------|-----------------|--|
|                         | Threaded connection | O-ring                | temperature*    |  |
| NN12Q                   | Steel               | NBR (buna N)          | -20 to + 90 °C  |  |
| NN22Q                   | Stainless steel     | or FPM (Viton)        | -20 to + 200 °C |  |

\*O-ring with DVGW certification can be used up to +80 °C

#### Dimensions in mm, weight G in kg

| PN                                   |         | 2       | 50      |         | 16      | 60    |       | 100   |       |
|--------------------------------------|---------|---------|---------|---------|---------|-------|-------|-------|-------|
| DN                                   | 6       | 8       | 10      | 12      | 16      | 20    | 25    | 32    | 40    |
| d                                    | M14x1.5 | M16x1.5 | M18x1.5 | M22x1.5 | M26x1.5 | M30x2 | M36x2 | M45x2 | M52x2 |
| а                                    | 32      | 35      | 35      | 35      | 38      | 40    | 44    | 46    | 50    |
| I                                    | 40      | 45      | 45      | 47      | 52      | 56    | 62    | 66    | 72    |
| S                                    | 17      | 19      | 22      | 27      | 32      | 36    | 41    | 55    | 60    |
| G<br>approx.                         | 0.03    | 0.04    | 0.05    | 0.07    | 0.11    | 0.15  | 0.21  | 0.31  | 0.48  |
| Associated<br>outer pipe<br>diameter | 8       | 10      | 12      | 15      | 18      | 22    | 28    | 35    | 42    |


When ordering, please specify: connection fitting type, nominal width (DN), operating temperature, material for O-ring, in case of stainless steel material no.

Note: This threaded connection is suitable for the 24° conical fitting according to DIN EN ISO 8434-1, series L or for connection to threaded pins with bore shape W (24°), series L according to DIN 3861.

## 6.4 Connection fittings

#### **Connection fittings corrugated hoses**

Type NN12R, type NN22R



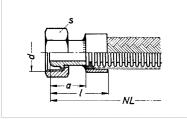
Threaded connection, swivelling 24° sealing cone with O-ring\*, union nut DIN ISO 12151-2, series S made of steel or stainless steel 1.4541 or 1.4571 (union nut 1.4571), welded or brazed

| Connection fitting type | Mat                 | Permissible operating |                 |
|-------------------------|---------------------|-----------------------|-----------------|
|                         | Threaded connection | O-ring                | temperature*    |
| NN12R                   | Steel               | NBR (buna N)          | -20 to + 90 °C  |
| NN22R                   | Stainless steel     | or FPM (Viton)        | -20 to + 200 °C |

\*O-ring with DVGW certification can be used up to +80 °C

#### Dimensions in mm, weight G in kg

| PN                                   |         | 630     |         |         | 400   |       | 250   |       |  |
|--------------------------------------|---------|---------|---------|---------|-------|-------|-------|-------|--|
| DN                                   | 6       | 8       | 10      | 12      | 16    | 20    | 25    | 32    |  |
| d                                    | M18x1.5 | M20x1.5 | M22x1.5 | M24x1.5 | M30x2 | M36x2 | M42x2 | M52x2 |  |
| а                                    | 35      | 35      | 35      | 35      | 40    | 44    | 48    | 50    |  |
| I                                    | 43      | 45      | 45      | 47      | 54    | 60    | 66    | 70    |  |
| s                                    | 22      | 24      | 27      | 30      | 36    | 46    | 50    | 60    |  |
| G                                    | 0.05    | 0.06    | 0.08    | 0.1     | 0.16  | 0.30  | 0.37  | 0.58  |  |
| approx.                              |         |         |         |         |       |       |       |       |  |
| Associated<br>outer pipe<br>diameter | 10      | 12      | 14      | 16      | 20    | 25    | 30    | 38    |  |


When ordering, please specify: connection fitting type, nominal width (DN), operating temperature, material for O-ring, in case of stainless steel material no.

Note: This threaded connection is suitable for the 24° conical fitting according to DIN EN ISO 8434-1, series S or for connection to threaded pin with bore shape W (24°), series S according to DIN 3861.



(HYDRA)

Type NO12S, type NO22S, type NO52S



Threaded connection, swivelling Ball type bushing according to DIN 3863, union nut with metric thread DIN 3870, series LL made of steel, stainless steel 1.4541 or 1.4571 or brass, welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| NO12S                   | Steel           | 300 °C                            |  |  |
| NO22S                   | Stainless steel | 550 °C                            |  |  |
| N052S                   | Brass           | 250 °C                            |  |  |

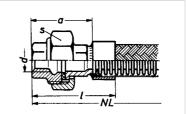
NO12S, NO22S: dimensions in mm, weight G in kg

| PN      |         | 100     |         |         |         |         | 63      |         |         |       | 25    |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|
| DN      | 6       | 8       | 10      | 12      | 16      | 20      | 25      | 32      | 40      | *50   | *65   |
| d       | M14x1.5 | M16x1.5 | M18x1.5 | M22x1.5 | M26x1.5 | M30x1.5 | M38x1.5 | M45x1.5 | M52x1.5 | M65x2 | M78x2 |
| а       | 24      | 24      | 24      | 29      | 29      | 29      | 31      | 31      | 31      | 34    | 40    |
| I       | 32      | 34      | 34      | 41      | 43      | 45      | 49      | 51      | 53      | 59    | 68    |
| s       | 17      | 19      | 22      | 27      | 32      | 36      | 46      | 50      | 60      | 75    | 90    |
| G       | 0.03    | 0.04    | 0.05    | 0.08    | 0.10    | 0.12    | 0.22    | 0.30    | 0.31    | 0.48  | 0.72  |
| approx. |         |         |         |         |         |         |         |         |         |       |       |

\* DN 50 + 65 is not standardised!

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, with stainless steel material no.

## NO52S:


PN 25 for all DN, other dimensions see table NF12S, NF22S

Note: This threaded connection is suitable for connection to the bore shapes U and Y (60°) as per DIN 3863.

# 6.4 Connection fittings

## **Connection fittings corrugated hoses**

Type QA02S

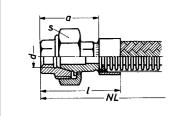


Threaded fitting, internal thread Flat sealing With Whitworth pipe thread DIN EN 10226 (ISO 7/1) Made of malleable iron, brazed

| Connection fitting type | Permissible operating temperature | Permissible operating pressure |
|-------------------------|-----------------------------------|--------------------------------|
| QA02S                   | Chapter 7.3                       | Chapter 7.3                    |

## Dimensions in mm, weight G in kg

| DN           | 6    | 8    | 10                 | 12   | 16   | 20   | 25   | 32   | 40   | 50   |
|--------------|------|------|--------------------|------|------|------|------|------|------|------|
| d            | Rp¼  | Rp¼  | Rp <sup>3</sup> /8 | Rp½  | Rp½  | Rp ¾ | Rp1  | Rp1¼ | Rp1½ | Rp2  |
| а            | 52   | 52   | 54                 | 59   | 59   | 65   | 70   | 78   | 85   | 94   |
| Ι            | 60   | 62   | 64                 | 71   | 73   | 81   | 88   | 98   | 107  | 119  |
| S            | 28   | 28   | 32                 | 39   | 39   | 48   | 55   | 67   | 74   | 90   |
| G<br>approx. | 0.11 | 0.12 | 0.14               | 0.18 | 0.19 | 0.31 | 0.42 | 0.68 | 0.87 | 1.31 |


When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature



#### 6.4 Connection fittings

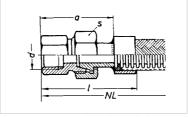
# Connection fittings corrugated hoses

Type QB02S



Threaded fitting, internal thread Conical seal, With Whitworth pipe thread DIN EN 10226 (ISO 7/1) Made of malleable iron, brazed

| Connection fitting type  | Permissible operating temperature | Permissible operating pressure |
|--------------------------|-----------------------------------|--------------------------------|
| QB02S                    | Chapter 7.3                       | Chapter 7.3                    |
| Dimensions in mm, weight | : G in kg                         |                                |


| DN      | 6    | 8    | 10                 | 12   | 16    | 20   | 25   | 32   | 40   | 50   |
|---------|------|------|--------------------|------|-------|------|------|------|------|------|
| d       | Rp¼  | Rp¼  | Rp <sup>3</sup> /8 | Rp½  | Rp1/2 | Rp ¾ | Rp1  | Rp1¼ | Rp1½ | Rp2  |
| а       | 52   | 52   | 54                 | 59   | 59    | 65   | 70   | 78   | 85   | 94   |
| I       | 60   | 62   | 64                 | 71   | 73    | 81   | 88   | 98   | 107  | 119  |
| s       | 28   | 28   | 32                 | 39   | 39    | 48   | 55   | 67   | 74   | 90   |
| G       | 0.11 | 0.12 | 0.14               | 0.19 | 0.20  | 0.33 | 0.44 | 0.72 | 0.88 | 1.37 |
| approx. |      |      |                    |      |       |      |      |      |      |      |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature

## 6.4 Connection fittings

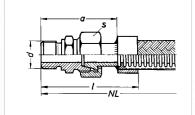
#### **Connection fittings corrugated hoses**

Type QB12W, type QB22W, type QB52W



Threaded fitting, internal thread Conical sealing with 24° cone angle Suitable for bore shape W DIN 3861 L, DIN EN ISO 8434-1 with Whitworth pipe thread DIN EN 10226 (ISO 7/1) made of steel, stainless steel 1.4541 or 1.4571 (union nut 1.4301) or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |
|-------------------------|-----------------|-----------------------------------|
| QB12W                   | Steel           | 300 °C                            |
| QB22W                   | Stainless steel | 550 °C                            |
| QB52W                   | Brass           | 250 °C                            |


Dimensions in mm, weight G in kg

| PN           |      | 100  |                    |       |      |        |      |      | 63   |      |
|--------------|------|------|--------------------|-------|------|--------|------|------|------|------|
| DN           | 6    | 8    | 10                 | 12    | 16   | 20     | 25   | 32   | 40   | 50   |
| d            | Rp¼  | Rp¼  | Rp <sup>3</sup> /8 | Rp1/2 | Rp½  | Rp 3⁄4 | Rp1  | Rp1¼ | Rp1½ | Rp2  |
| а            | 43   | 44   | 47                 | 52    | 53   | 60     | 66   | 71   | 75   | 83   |
| I            | 51   | 54   | 57                 | 64    | 67   | 76     | 84   | 91   | 97   | 108  |
| s            | 17   | 19   | 22                 | 27    | 32   | 36     | 41   | 50   | 60   | 70   |
| G<br>approx. | 0.05 | 0.06 | 0.08               | 0.13  | 0.16 | 0.21   | 0.31 | 0.48 | 0.61 | 0.81 |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel materials no.



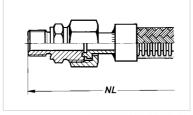
Type RB12W, type RB22W, type RB52W



Threaded fitting, external thread Conical sealing with 24° cone angle Suitable for bore shape W according to DIN 3861 L, DIN EN ISO 8434-1 L With Whitworth pipe thread ISO 228/1 made of steel, stainless steel 1.4541 or 1.4571 (union nut 1.4301) or brass welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| RB12W                   | Steel           | 300 °C                            |  |  |
| RB22W                   | Stainless steel | 550 °C                            |  |  |
| RB52W                   | Brass           | 250 °C                            |  |  |

Dimensions in mm, weight G in kg


| PN                |      | 100   |                    |      |      |      |      |      |        |      |
|-------------------|------|-------|--------------------|------|------|------|------|------|--------|------|
| DN                | 6    | 8     | 10                 | 12   | 16   | 20   | 25   | 32   | 40     | 50   |
| d                 | G¼A  | G1⁄4A | G <sup>3</sup> /8A | G½A  | G½A  | G¾A  | G1A  | G1¼A | G11⁄2A | G2A  |
| а                 | 49   | 51    | 54                 | 59   | 60   | 68   | 74   | 79   | 83     | 92   |
| I                 | 57   | 61    | 64                 | 71   | 74   | 84   | 92   | 99   | 105    | 117  |
| s                 | 17   | 19    | 22                 | 27   | 32   | 36   | 41   | 50   | 60     | 70   |
| G<br>ap-<br>prox. | 0.05 | 0.06  | 0.08               | 0.13 | 0.16 | 0.21 | 0.32 | 0.5  | 0.68   | 0.93 |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

## 6.4 Connection fittings

#### **Connection fittings corrugated hoses**

Special applications type RD16, type RD26



Threaded fitting for high pressure, external thread Without intermediate seal, metal sealing With Whitworth pipe thread ISO 228/1 Made of steel 1.0460 or stainless steel Welded

| Connection | fitting type | Material        | Permissible operating temperature |
|------------|--------------|-----------------|-----------------------------------|
| PN 100     | PN 200       |                 |                                   |
| RD16S      | RD16W        | Steel           | 350 °C                            |
| RD26S      | RD26W        | Stainless steel | 400 °C                            |

Dimensions in mm, weight G in kg

## Application

High pressure

(also for pulsations, oscillations)

- Vacuum
- Critical media (e.g. superheated steam, heat transfer oil)
- High temperatures

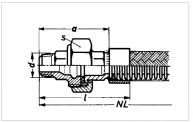
## Nominal diameter

DN 6 to DN 50

#### **Operating pressure**

According to the table, higher pressure stages on request

#### **Operating temperature**


According to the table, higher operating temperatures on request

## When ordering, please specify

- Connection fitting type
- Nominal diameter (DN)
- Operating temperature



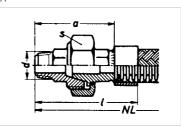
Type RE02S



Threaded fitting, external thread Flat sealing with Whitworth pipe thread DIN EN 10226 (ISO 7/1) Made of malleable iron Brazed

| Connection fitting type | Permissible operating temperature | Permissible operating pressure |
|-------------------------|-----------------------------------|--------------------------------|
| RE02S                   | Chapter 7.3                       | Chapter 7.3                    |
|                         |                                   |                                |

Dimensions in mm, weight G in kg


| DN           | 12   | 16   | 20   | 25   | 32   | 40   |
|--------------|------|------|------|------|------|------|
| d            | R1/2 | R1/2 | R¾   | R1   | R1¼  | R1½  |
| а            | 77   | 77   | 86   | 93   | 103  | 111  |
| 1            | 89   | 91   | 102  | 111  | 123  | 133  |
| s            | 39   | 39   | 48   | 55   | 67   | 74   |
| G<br>approx. | 0.21 | 0.22 | 0.33 | 0.48 | 0.74 | 0.91 |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature

# **6.4 Connection fittings**

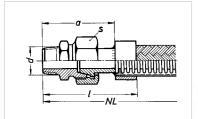
#### **Connection fittings corrugated hoses**

Type RF02S



Threaded fitting, external thread Conical sealing With Whitworth pipe thread DIN EN 10226 (ISO 7/1) Made of malleable iron Brazed

| Connection fitting type | Permissible operating temperature | Permissible operating pressure |
|-------------------------|-----------------------------------|--------------------------------|
| RF02S                   | Chapter 7.3                       | Chapter 7.3                    |


## Dimensions in mm, weight G in kg

| DN           | 6    | 8    | 10                | 12   | 16   | 20   | 25   | 32   | 40   | 50   |
|--------------|------|------|-------------------|------|------|------|------|------|------|------|
| d            | R1⁄4 | R1⁄4 | R <sup>3</sup> /8 | R1⁄2 | R1⁄2 | R3⁄4 | R1   | R1¼  | R1½  | R2   |
| а            | 66   | 66   | 69                | 77   | 77   | 86   | 93   | 103  | 111  | 123  |
| 1            | 74   | 76   | 79                | 89   | 91   | 102  | 111  | 123  | 133  | 148  |
| s            | 28   | 28   | 32                | 39   | 39   | 50   | 55   | 67   | 74   | 90   |
| G<br>approx. | 0.11 | 0.11 | 0.15              | 0.22 | 0.23 | 0.35 | 0.51 | 0.78 | 0.99 | 1.50 |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature



Type RF12W, type RF22W, type RF52W



Threaded fitting, external thread Conical sealing with 24° cone angle Suitable for bore shape W DIN 3861L, DIN EN ISO 8434-1 With Whitworth pipe thread DIN EN 10226 (ISO 7/1) Made of steel, stainless steel 1.4541 or 1.4571 or brass Welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| RF12W                   | Steel           | 300 °C                            |  |  |
| RF22W                   | Stainless steel | 550 °C                            |  |  |
| RF52W                   | Brass           | 250 °C                            |  |  |

Dimensions in mm, weight G in kg

| PN                |      |      |                   | 63   |      |      |      |     |      |      |
|-------------------|------|------|-------------------|------|------|------|------|-----|------|------|
| DN                | 6    | 8    | 10                | 12   | 16   | 20   | 25   | 32  | 40   | 50   |
| d                 | R1⁄4 | R1⁄4 | R <sup>3</sup> /8 | R1/2 | R1/2 | R3⁄4 | R1   | R1¼ | R1½  | R2   |
| а                 | 47   | 49   | 52                | 59   | 60   | 67   | 74   | 80  | 82   | 93   |
| I                 | 55   | 59   | 62                | 71   | 74   | 83   | 92   | 100 | 104  | 118  |
| s                 | 17   | 19   | 22                | 27   | 32   | 36   | 41   | 50  | 60   | 70   |
| G<br>ap-<br>prox. | 0.05 | 0.06 | 0.08              | 0.13 | 0.16 | 0.21 | 0.32 | 0.5 | 0.68 | 0.93 |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

## 6.4 Connection fittings

## **Connection fittings corrugated hoses**

Special applications type RM16, type RM26



Threaded fitting for high pressure, external thread Without intermediate seal, metal sealing With metric ISO thread according to DIN 13 Made of steel 1.0460 or stainless steel Welded

| Connection | fitting type  | Material        | Permissible operating temperature |
|------------|---------------|-----------------|-----------------------------------|
| PN 100     | PN 100 PN 200 |                 |                                   |
| RM16S      | RM16W         | Steel           | 350 °C                            |
| RM26S      | RM26W         | Stainless steel | 400 °C                            |

#### Application

High pressure

(also for pulsations, oscillations)

- Vacuum
- Critical media

   (e.g. superheated steam, heat transfer oil)
- High temperatures

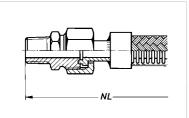
#### Nominal diameter

DN 6 to DN 50

## **Operating pressure**

According to the table, higher pressure stages on request

#### **Operating temperature**


According to the table, higher operating temperatures on request

## When ordering, please specify

- Connection fitting type
- Nominal diameter (DN)
- Operating temperature



Special applications type RN16, type RN26



Threaded fitting for high pressure, external thread Without intermediate seal, metal sealing With conical NPT thread ANSI B1.20.1 Made of steel 1.0460 or stainless steel welded

| Connection | Connection fitting type |                 | Permissible operating temperature |
|------------|-------------------------|-----------------|-----------------------------------|
| PN 100     | PN 200                  |                 |                                   |
| RN16S      | RN16W                   | Steel           | 350 °C                            |
| RN26S      | RN26W                   | Stainless steel | 400 °C                            |

# Application

- High pressure (also for pulsations, oscillations)
- Vacuum
- High temperatures

## Nominal diameter

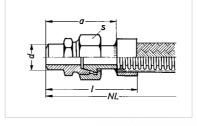
DN 6 to DN 50

# **Operating pressure**

According to the table, higher pressure stages on request

## **Operating temperature**

According to the table, higher operating temperatures on request


## When ordering, please specify

- Connection fitting type
- Nominal diameter (DN)
- Operating temperature

## 6.4 Connection fittings

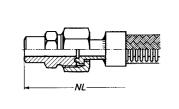
#### **Connection fittings corrugated hoses**

Type SS12W, type SS22W



Threaded fitting, welding end Conical sealing with 24° cone angle Suitable for bore shape W DIN 3861 L, DIN EN ISO 8434-1 L With welding end, pipe dimension ISO Made of steel or stainless steel 1.4541 or 1.4571 welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| SS12W                   | Steel           | 300 °C                            |  |  |
| SS22W                   | Stainless steel | 550 °C                            |  |  |


## Dimensions in mm, weight G in kg

| PN                |      |      |      | 63   |      |      |      |      |      |      |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| DN                | 6    | 8    | 10   | 12   | 16   | 20   | 25   | 32   | 40   | 50   |
| d                 | 10.2 | 13.5 | 17.2 | 21.3 | 21.3 | 26.9 | 33.7 | 42.4 | 48.3 | 60.3 |
| а                 | 45   | 47   | 49   | 52   | 53   | 61   | 65   | 70   | 74   | 83   |
| I                 | 53   | 57   | 59   | 64   | 67   | 77   | 83   | 90   | 96   | 108  |
| s                 | 17   | 19   | 22   | 27   | 32   | 36   | 41   | 50   | 60   | 70   |
| G<br>ap-<br>prox. | 0.04 | 0.05 | 0.07 | 0.11 | 0.13 | 0.23 | 0.29 | 0.44 | 0.64 | 1.01 |

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.



Special applications Type ST16, type ST26



Threaded fitting for high pressure, welding end Without intermediate seal, metallic seal made of steel 1.0460 or stainless steel Welded

| Connection | Connection fitting type |       | Permissible operating<br>temperature |
|------------|-------------------------|-------|--------------------------------------|
| PN 100     | PN 100 PN 200           |       |                                      |
| ST16S      | ST16W                   | Steel | 350 °C                               |
| ST26S      |                         |       | 400 °C                               |

## Application

- High pressure (also for pulsations, oscillations)
- Vacuum
- Critical media (e.g. superheated steam, heat transfer oil)
- High temperatures

## Nominal diameter

DN 6 to DN 50

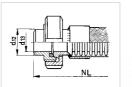
# **Operating pressure**

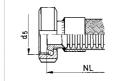
According to the table, higher pressure stages on request

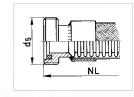
## **Operating temperature**

According to the table, higher operating temperatures on request

# When ordering, please specify


- Connection fitting type
- Nominal diameter (DN)
- Operating temperature


## 6.4 Connection fittings


## **Connection fittings corrugated hoses**

Special applications Type SY22S, type SY22U, type SY22V

Threaded fitting DIN 11851 for liquid foodstuffs Made of stainless steel 1.4301, burr and gap-free welded, sterilisable







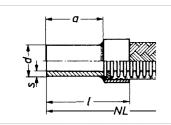
Type SY22S Ball-type socket with grooved union nut with round thread DIN 405. Threaded pipe socket with welding end. Type SY22U Ball-type socket with grooved union nut with round thread DIN 405. Type SY22V Threaded pipe socket with sealing ring.

| Connection fitting type | Mat                    | erial                           | Permissible operating                            |  |  |
|-------------------------|------------------------|---------------------------------|--------------------------------------------------|--|--|
|                         | Screw connection       | Sealing ring                    | temperature                                      |  |  |
| SY22S                   | Stainless steel 1.4301 | NBR (buna N)                    | -20 to +230 °C                                   |  |  |
| SY22U                   | Other material no.     | FPM (Viton)<br>MVQ (silicon) or | Depending on sealing<br>material and flow medium |  |  |
| SY22V                   | On request             | PTFE (Teflon)                   |                                                  |  |  |

#### Dimensions in mm

| PN  | 40       |                       |          |          |          |                       | 25       |          |           |           |
|-----|----------|-----------------------|----------|----------|----------|-----------------------|----------|----------|-----------|-----------|
| DN  | 10       | 16                    | 20       | 25       | 32       | 40                    | 50       | 65       | 80        | 100       |
| d4* | 13       | 19                    | 23       | 29       | 35       | 41                    | 53       | 70       | 85        | 104       |
| d1* | 10       | 16                    | 20       | 26       | 32       | 38                    | 50       | 66       | 81        | 100       |
| d5  | Rd28x1/8 | Rd34x <sup>1</sup> /8 | Rd44x1/6 | Rd52x1/6 | Rd58x1/6 | Rd65x <sup>1</sup> /6 | Rd78x1/6 | Rd95x1/6 | Rd110x1/4 | Rd130x1/4 |

\* on request also with ISO pipe dimensions, see page 95


When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, sealing ring material or medium, pressure.

1301uk/8/05/20/pdf

(HYDRA)

(HYDRA®)

Type UA12S, type UA22S



Pipe fittings Welding end with ISO pipe dimensions Made of steel or stainless steel 1.4541 or 1.4571 Welded or brazed

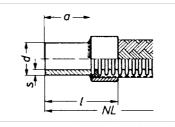
| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| UA12S                   | Steel           | 480 °C                            |  |  |
| UA22S                   | Stainless steel | 550 °C                            |  |  |

Dimensions in mm, weight G in kg

| PN           |        | 16                | 60                |      | 1(   | )0   |      | 40   |      |      |      |       |       |       | 16    |      |       |
|--------------|--------|-------------------|-------------------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|------|-------|
| DN           | 8      | 10                | 12                | 16   | 20   | 25   | 32   | 40   | 50   | 65   | 80   | 100   | 125   | 150   | 200   | 250  | 300   |
| d            | 10.02) | 13.5              | 17.2              | 21.3 | 26.9 | 33.7 | 42.4 | 48.3 | 60.3 | 76.1 | 88.9 | 114.3 | 139.7 | 168.3 | 219.1 | 273  | 323.9 |
| s            | 1.52)  | 1.8 <sup>1)</sup> | 1.8 <sup>1)</sup> | 2    | 2.3  | 2.6  | 2.6  | 2.6  | 2.9  | 2.9  | 3.2  | 3.6   | 4     | 4.5   | 6.3   | 6.3  | 7.1   |
| а            | 50     | 55                | 55                | 60   | 60   | 65   | 65   | 70   | 70   | 75   | 80   | 85    | 85    | 90    | 100   | 100  | 120   |
| I            | 60     | 65                | 67                | 74   | 76   | 83   | 85   | 92   | 95   | 103  | 110  | 117   | 121   | 130   | 145   | 150  | 175   |
| G            | 0.04   | 0.05              | 0.06              | 0.08 | 0.13 | 0.18 | 0.26 | 0.30 | 0.41 | 0.55 | 0.74 | 1.10  | 1.54  | 2.14  | 3.83  | 5.13 | 7.95  |
| ap-<br>prox. |        |                   |                   |      |      |      |      |      |      |      |      |       |       |       |       |      |       |

<sup>1</sup>) with stainless steel: s = 1.6

2) with steel 10.2 x 1.6


Material selection for steels: see chapter 7.2.

When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.

## 6.4 Connection fittings

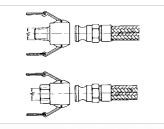
#### **Connection fittings corrugated hoses**

Type UD12Q, type UD22Q



Pipe fittings Precision pipe socket for tapping ring fitting connection, DIN EN ISO 8434-1 (series L) made of steel or stainless steel 1.4541 or 1.4571 welded or brazed

| Connection fitting type | Material        | Permissible operating temperature |  |  |
|-------------------------|-----------------|-----------------------------------|--|--|
| UD12Q                   | Steel           | 300 °C                            |  |  |
| UD22Q                   | Stainless steel | 550 °C                            |  |  |


Dimensions in mm, weight G in kg

| PN                |      |      | 2    | 50   |      | 16   | 60   |      | 100  |      |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| DN                | 4*   | 6*   | 8*   | 10*  | 12*  | 16*  | 20*  | 25   | 32   | 40   |
| d                 | 6    | 8    | 10   | 12   | 15   | 18   | 22   | 28   | 35   | 42   |
| s                 | 1    | 1    | 1.5  | 1.5  | 2    | 1.5  | 2    | 2    | 2    | 3    |
| а                 | 28   | 28   | 30   | 30   | 32   | 32   | 36   | 40   | 45   | 45   |
| I                 | 36   | 36   | 40   | 40   | 44   | 46   | 52   | 58   | 65   | 67   |
| G<br>ap-<br>prox. | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.06 | 0.10 | 0.14 | 0.18 |

\* Also suitable for Swagelok® threaded fittings for metric pipe dimensions. When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, in case of stainless steel material no.



Type WA22S, type WA32S



#### Quick release coupling

Lever arm coupling DIN EN 14420-7 with Whitworth pipe thread ISO 228/1 or Whitworth external thread DIN EN 10226 (ISO 7/1) Made of brass or stainless steel Welded or brazed

| Connecti<br>fitting ty |        | Material              |             |     | Pe          | ermissible operating pressure |             |                | Permissible operating<br>temperature |     |  |
|------------------------|--------|-----------------------|-------------|-----|-------------|-------------------------------|-------------|----------------|--------------------------------------|-----|--|
|                        |        | ck release<br>oupling | Sealing r   | ing |             |                               |             |                |                                      |     |  |
| WA22S                  | Stainl | ess steel             | NBR (buna l | N)  | 16 bar      |                               | 65 °C (NBR) |                |                                      |     |  |
| WA32S                  | Brass  |                       | FPM (Viton) |     |             |                               |             | FPM on request |                                      | st  |  |
|                        |        |                       |             |     |             |                               |             |                |                                      |     |  |
| DN                     | 20     | 25                    | 32          | 4   | 0           | 50                            | 65          |                | 80                                   | 100 |  |
| d1 R/G                 | 3/4    | 1                     | 1 1⁄4       | 1   | 1/2 2 2 1/2 |                               |             | 3              | 4                                    |     |  |

## 6.4 Connection fittings

This quick release coupling stands out particularly through easy handling, quick mounting, robust design work and a long service life.

In order to complete the coupling process, the two halves of the coupling are put together and securely connected with each other by applying both cam levers. As there is compression of the inserted seals rather than a turning movement when coupling up, the connection can be completed without damaging the hose by twisting.

#### Applications

Lever arm couplings DIN EN 14420-7 are used to join hoses with connections for conveying liquids, solids and gases, except liquid gases and steam. Particular care is to be taken with the use of materials that are subject to the regulations on dangerous materials (Ordinance on Hazardous Substances – GefStoffV). The couplings can be used in a pressure range of -800 mbar to 16 bar in a working temperature range of -20 °C to +65 °C.

WARNING: Reduce the pressure in the pipeline before decoupling.

Please state the following when ordering: connection fitting, nominal diameter (DN), operating temperature, internal or external thread, sealing material or medium, pressure.

If only one half of the coupling is required (male or female part), this must be highlighted. Other DN upon request.



Type WB12S, type WB22S, type WB52S

| male part | female part |
|-----------|-------------|
|           |             |
|           |             |
|           |             |

## Version 1

Sealing coupling (female part) – self-sealing after decoupling plug nipple (male part) with internal thread – open passageway

# Version 2

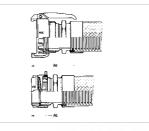
Sealing coupling (female part) – self-sealing after decoupling sealing nipple (male part) with internal thread – self-sealing after decoupling

# Version 3

Sealing coupling (female part) – self-sealing after decoupling sealing nipple (male part) with external thread – self-sealing after decoupling

## Quick disconnect coupler

Hose side connected with threaded connection, type MA ... (page 143) consisting of sealing coupling (female part) and plug nipple (male part) Thread: Whitworth pipe thread ISO 228/1


| Connection fitting type DN       |            | Mat  | Permissible operating |                         |                                           |
|----------------------------------|------------|------|-----------------------|-------------------------|-------------------------------------------|
| P <sub>perm</sub> Bar and vacuum |            |      | Coupling              | Sealing ring            | temperature                               |
| WB12S                            | 30-100 bar |      | Zinc-plated steel     | NBR (buna N)            | -50 to +200 °C                            |
| WB22S                            | 20-200 bar | 4-50 | Stainless steel       | FPM (Viton)             | Depending on sealing<br>material and flow |
| WB52S                            | 20-200 bar |      | Brass                 | EP (ethylene-propylene) | medium                                    |

Nominal diameter: DN 4 to DN 50. PN to 400 bar, dependent on DN. When ordering, please specify: connection fitting type, nominal diameter (DN), operating temperature, version for male part and/or female part, sealing material or medium, pressure. Other materials and other versions upon request.

# Connection fittings corrugated hoses

Type WC22S, type WC52S

6.4 Connection fittings



Quick release coupling for tank lorry DIN EN 14420-6 Connected on hose side with threaded connection type MA ... (page 143) consisting of swivelling female part (MK coupling) with coupling levers or fixed male part (VK coupling)

Both male part and female part can be mounted on the hose. Connection: Whitworth pipe thread as per ISO 228/1

| Connection fitting type                      | Mat             | erial                                            | Permissible operating |  |  |
|----------------------------------------------|-----------------|--------------------------------------------------|-----------------------|--|--|
| PN10                                         | Coupling        | Sealing ring                                     | temperature           |  |  |
| WC22S                                        | Stainless steel | AU, EU (Vulkollan)<br>NBR (buna N)               | 100 °C                |  |  |
| WC52S                                        | Brass           | FPM (Viton)<br>CSM (Hypalon) or<br>PTFE (Teflon) |                       |  |  |
| DN                                           | 50              | 80                                               | 100                   |  |  |
| Designation for:<br>male part<br>female part | VK50<br>MK50    | VK80<br>MK80                                     | VK100<br>MK100        |  |  |

When ordering, please specify: connection fitting type, operating temperature, nominal diameter designation for male part and/or female part, sealing material or medium, pressure. Higher temperatures upon request.

172 WITZENMANN

(HYDRA®)

## 6.4 Connection fittings

## Self-assembly connection fittings

Self-assembly connection fittings enable quick and cost-effective fitting of HYDRA metal hoses on building sites. The hoses are available as goods sold by the metre, cut to length on site and fitted with the appropriate connectors. The following connection fittings are suitable for self-assembly:

| Hose type                 | Nominal diameter                 | Operating pressure                   | Operating pressure with<br>HYDRA Quick screw<br>connection |  |  |
|---------------------------|----------------------------------|--------------------------------------|------------------------------------------------------------|--|--|
| RS 341S00                 | DN 10 – DN 25<br>DN 32           | 20 bar<br>2.5 bar                    | 6 bar<br>2.5 bar                                           |  |  |
| RS 351S00<br>(on request) | DN 12<br>DN 16<br>DN 20<br>DN 25 | 18 bar<br>17 bar<br>9 bar<br>10 bar  | 6 bar                                                      |  |  |
| IX 331S00<br>(on request) | DN 12<br>DN 16<br>DN 20<br>DN 25 | 34 bar<br>18 bar<br>18 bar<br>16 bar | 6 bar                                                      |  |  |
| RS 331S12                 | DN 6 – DN 50                     | 16 bar                               | -                                                          |  |  |

The fittings for hose types RS 341S00 and RS 331S12 are specified below. Information on self-assembly of RS 351 and of IX 331 is available on request.

The operating pressures of non-braided hoses are designed to avoid permanent expansion of more than 2%.

Metal hoses with connection fittings for self-assembly are not to be used with dynamic loads such as frequent movement, vibrations and shock pressure, hazardous media and heat transfer oils.

## 6.4 Connection fittings

#### Assembly instructions RS 341S00



1. Cut the hose to required length in the corrugation groove with a pipe cutter



3. Open the clamping jaw after pulling back the striking pin. Place the corrugated hose with the second corrugation groove in the clamping jaw.



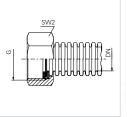
2. Slip the union nut over hose

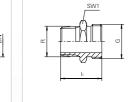


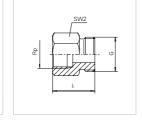
4. Close the clamping jaw. Use the striking pin to compress the ridge into a rim.



5. Press the burr inwards with the swaging.





6. Insert the clamping ring into the first corrugation groove and compress to form a closed ring. Insert the seal, place the male part in position and tighten with two spanners.




## Self-assembly connection fittings, RS 341S00

Type NA50S Removable threaded connection







#### Type NA50S - union nut

Type MA50S - external thread Type MA50S - internal thread

Set consists of: brass union nut, flush seal, stainless steel clamping ring, gasket (AFM 34)

| DN  | Туре  | Threaded connection set DIN EN ISO 228-1 | WAF2 | Weight approx. | Order number |  |
|-----|-------|------------------------------------------|------|----------------|--------------|--|
| -   | -     | -                                        | mm   | kg             | -            |  |
| 10  | NA50S | G ½                                      | 24   | 0.026          | 379144       |  |
| 12  | NA50S | G ½                                      | 24   | 0.026          | 377093       |  |
| 16  | NA50S | G 3⁄4                                    | 30   | 0.036          | 377094       |  |
| 20  | NA50S | G 1                                      | 38   | 0.076          | 377095       |  |
| 25  | NA50S | G 1 ¼                                    | 46   | 0.097          | 377096       |  |
| 32* | NA50S | G 1 ½                                    | 55   | 0.152          | 377097       |  |

\* can only be pre-assembled in factory

## 6.4 Connection fittings

#### Self-assembly connection fittings, RS 341S00

Type MA50S Removable threaded connection

Brass male part, external thread suitable for threaded connection, type NA50S

| DN | Туре  | Male part external thread |                  | 11   | WAF1 | Weight  | Order  |
|----|-------|---------------------------|------------------|------|------|---------|--------|
|    |       | DIN EN 10226-1            | DIN EN ISO 228-1 |      |      | approx. | number |
| -  | -     | -                         | -                | mm   | mm   | kg      | -      |
| 10 | MA50S | R 3/8                     | G 3/8            | 27.0 | 19   | 0.045   | 275486 |
| 12 | MA50S | R 1/2                     | G ½              | 33.0 | 22   | 0.060   | 275487 |
| 16 | MA50S | R 1/2                     | G 3⁄4            | 34.0 | 27   | 0.070   | 284264 |
| 20 | MA50S | R 3⁄4                     | G 1              | 38.0 | 36   | 0.126   | 275489 |
| 25 | MA50S | R 1                       | G 1¼             | 45.5 | 46   | 0.244   | 080142 |
| 32 | MA50S | R 1¼                      | G 1½             | 48.0 | 50   | 0.298   | 086459 |

Brass male part, internal thread suitable for threaded connection, type NA50S

| DN | Туре  | Male connector | r internal thread | 11   | WAF2 | Weight  | Order  |  |
|----|-------|----------------|-------------------|------|------|---------|--------|--|
|    |       | DIN EN 10226-1 | DIN EN ISO 228-1  |      |      | approx. | number |  |
| -  | -     | -              | -                 | mm   | mm   | kg      | -      |  |
| 10 | MA50S | Rp ⅔           | G 3/8             | 26.0 | 22   | 0.043   | 275491 |  |
| 12 | MA50S | Rp ½           | G ½               | 29.0 | 27   | 0.070   | 275495 |  |
| 16 | MA50S | Rp 1/2         | G 3⁄4             | 29.0 | 27   | 0.075   | 275496 |  |
| 20 | MA50S | Rp ¾           | G 1               | 33.0 | 36   | 0.156   | 275497 |  |
| 25 | MA50S | Rp 1           | G 1¼              | 37.0 | 41   | 0.309   | 328006 |  |
| 32 | MA50S | Rp 1¼          | G 1½              | 42.0 | 50   | 0.31    | 315474 |  |



## Self-assembly fittings RS 341S00

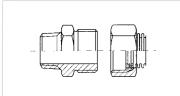



Fig. 1 Screw coupling Male part with external thread.



Fig. 3 Screw coupling Male part with threaded flange PN 20 1.4301.

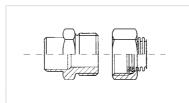



Fig. 2 Screw coupling male part with ISO welding end or connecting piece: Precision socket type for cutting ring

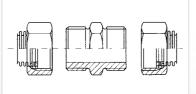



Fig. 4 Connection fittings: - 1 double nipple

- 2 union nuts

## 6.4 Connection fittings

#### Screw coupling

| DN | Screw cou<br>Order r               | pling Fig. 1<br>number |                      | pling Fig. 2<br>number  | Screw coupling Fig. 3<br>Order number     |
|----|------------------------------------|------------------------|----------------------|-------------------------|-------------------------------------------|
| -  | Stainless steel<br>1.4301<br>RE20S | Brass<br>RE50S         | Welding end<br>SS20S | Precision pipe<br>SS20S | Stainless steel<br>1.4301/1.4541<br>KB20E |
| 12 | 340 287                            | 294 708                | 340 289              | 393 001                 | -                                         |
| 16 | 340 210                            | 294 709                | 340 213              | 393 000                 | 340 203                                   |
| 20 | 340 211                            | 295 004                | 340 215              | 393 002                 | 340 204                                   |
| 25 | 340 212                            | 295 005                | 340 216              | 393 003                 | 340 206                                   |

## **Connection fitting**

| I | DN | Connection<br>Order r           | fitting Fig. 4<br>number | Reducer<br>Order number |                                 |  |  |  |
|---|----|---------------------------------|--------------------------|-------------------------|---------------------------------|--|--|--|
|   | -  | Stainless steel 1.4301<br>WN20S | Brass<br>WN50S           | DN<br>-                 | Stainless steel 1.4301<br>WN20S |  |  |  |
|   | 12 | 340 286                         | 319 947                  | -                       | -                               |  |  |  |
|   | 16 | 340 207                         | 319 948                  | 16/12                   | 426 120                         |  |  |  |
|   | 20 | 340 208                         | 319 949                  | -                       | -                               |  |  |  |
|   | 25 | 340 209                         | 319 950                  | 20/25                   | 426 122                         |  |  |  |

## **Dimensions for connectors**

| DN | Unio<br>Thread | Union nut<br>Thread Width across<br>flats |       | Screw-in<br>components<br>Welding end | Precision socket<br>type of connec-<br>ting piece | Width<br>across<br>flats |
|----|----------------|-------------------------------------------|-------|---------------------------------------|---------------------------------------------------|--------------------------|
| -  | -              | WAF                                       | -     | mm                                    | mm                                                | WAF                      |
| 12 | G ½            | 24                                        | R 1⁄2 | 17.2 x 1.8                            | 12 x 1.5 x 32<br>15 x 2 x 32                      | 22                       |
| 16 | G 3⁄4          | 30                                        | R 1/2 | 21.3 x 2.0                            | 18 x 1.5 x 32                                     | 27                       |
| 20 | G 1            | 41                                        | R 3⁄4 | 26.9 x 2.3                            | 22 x 2 x 36                                       | 36                       |
| 25 | G 1¼           | 46                                        | R 1   | 33.7 x 2.6                            | 28 x 2 x 40                                       | 46                       |

#### Note:

All sets are supplied with the required number of clamping discs (one-piece) and gaskets (Graphit Sigraflex for VA or AFM 34 for brass).



## 6.4 Connection fittings

#### Assembly instructions RS 331S12



Push the insert and union nuts for both sides of the connection onto the braided hose. Measure the required length of hose and cut off the braiding at this point with a wire cutter.



Push back the braiding slightly and saw the annularly corrugated hose off to the required length in the groove of the corrugation at right angles to the hose axis. This is best performed on a fast-running, fine-toothed circular saw. Remove burrs as necessary.

## Assembly instructions RS 331S12

6.4 Connection fittings



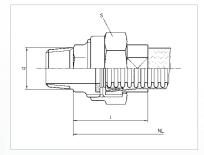
Clamp the hose to the intended surfaces in the bench vice (do not clamp to hose!). Lightly tap the three exposed corrugations of the hose with a hammer to attach to a gasket. Ideally, use a bolt that has a similar chamfer to the inside diameter of the hose.



Push the union nut over insert and clamp to bench vice. Attach screw-in part with inserted seal and tighten with a spanner without using excessive force. The union nut can be fully tightened once assembled with the pipework. Protect the hose assembly against excess torsion by holding it against the insert.



Widen the braiding slightly at the end of the hose and insert the two halves of the hose ring between the third and fourth corrugation on the hose.




Push the insert forwards until it sits flush to the hose ring. At the same time, smooth out the braiding so that it fits uniformly over the whole length of the hose. Cut the ends of the braiding flush to the front of the hose ring with a wire cutter.

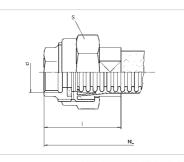
180 WITZENMANN



## Self-assembly fittings RS 331S12



Type RE58W


Threaded coupling, external thread, brass, flat seal, Set consists of screw-in part, union nut, insert, clamping ring and seal (AFM 34)

| DN | Туре  | External thread<br>d | Dimensions<br>s | I  | Weight<br>approx. | Order number |
|----|-------|----------------------|-----------------|----|-------------------|--------------|
| •  | -     | DIN EN<br>10226-1    | mm              | mm | kg/component      | -            |
| 6  | RE58W | R 1/4                | 24              | 41 | 0.09              | 87542        |
| 8  | RE58W | R 1/4                | 27              | 43 | 0.10              | 87543        |
| 10 | RE58W | R 3/8                | 30              | 47 | 0.11              | 87544        |
| 12 | RE58W | R 1/2                | 32              | 55 | 0.15              | 87545        |
| 16 | RE58W | R 1/2                | 41              | 59 | 0.25              | 87546        |
| 20 | RE58W | R 3⁄4                | 46              | 62 | 0.37              | 87547        |
| 25 | RE58W | R 1                  | 55              | 68 | 0.50              | 87548        |
| 32 | RE58W | R 11⁄4               | 65              | 71 | 0.76              | 87549        |

Loose fittings are only suitable under certain conditions for low viscosity or aggressive media or high pressure applications and are not suitable for gas applications. Should these conditions prevail, please send us your enquiry with details of the load, temperature, pressure and working medium.

#### 6.4 Connection fittings

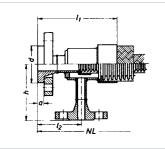
#### Self-assembly fittings RS 331S12



Type QA58W

Threaded coupling, brass internal thread, flat seal, \*DN 40 - DN 50 made of freecutting steel. Set consists of screw-in part, union nut, insert, clamping ring and seal (AFM 34)

| DN  | Туре  | External thread<br>d | Dimensions<br>s | I  | Weight<br>approx. | Order number |
|-----|-------|----------------------|-----------------|----|-------------------|--------------|
| -   | -     | DIN EN<br>10226-1    | mm              | mm | kg/component      | -            |
| 6   | QA58W | Rp 1⁄4               | 24              | 31 | 0.08              | 87522        |
| 8   | QA58W | Rp 1⁄4               | 27              | 34 | 0.09              | 87523        |
| 10  | QA58W | Rp ⅔                 | 30              | 37 | 0.10              | 87524        |
| 12  | QA58W | Rp ½                 | 32              | 42 | 0.14              | 87525        |
| 16  | QA58W | Rp ½                 | 41              | 45 | 0.24              | 87526        |
| 20  | QA58W | Rp 3⁄4               | 46              | 46 | 0.31              | 87527        |
| 25  | QA58W | Rp 1                 | 55              | 50 | 0.42              | 87528        |
| 32  | QA58W | Rp 1¼                | 65              | 52 | 0.59              | 87529        |
| 40* | QA18W | Rp 11/2              | 75              | 64 | 0.75              | 87538        |
| 50* | QA18W | R 2                  | 90              | 70 | 1.08              | 87539        |


Loose fittings are only suitable under certain conditions for low viscosity or aggressive media or high pressure applications and are not suitable for gas applications. Should these conditions prevail, please send us your enquiry with details of the load, temperature, pressure and working medium.

(HYDRA®)

(HYDRA®)

HYDRA double hose assembly, connection fittings on both ends

## HYDRA double hose assembly, connection fittings on both ends



- Inner hose: loose flange DIN PN 16 or 40
- Outer hose: welding neck flange DIN PN 16 or 40 each welded

| Connection fitting | Material                            |                      | Permissible operating temperature |            |  |  |  |
|--------------------|-------------------------------------|----------------------|-----------------------------------|------------|--|--|--|
| type               | Flange<br>inner hose                | Flange<br>outer hose | Inner hose                        | Outer hose |  |  |  |
| 1AA1GG1            | Steel                               | steel                | 300 °C                            | 300 °C     |  |  |  |
| 1AA8GG1            | Stainless steel<br>1.4541 or 1.4571 | steel                | 450 °C                            | 400 °C     |  |  |  |

With the 1AA8GG1 type, all the parts coming into contact with the medium of the inner hose are made of stainless steel

## Dimensions in mm, weight G in kg

| DN inner hose  | 10  | 16  | 20  | 25  | 32  | 40  | 50  | 65  | 80  | 100  | 150  |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| DN outer hose  | 25  | 32  | 40  | 50  | 50  | 65  | 80  | 100 | 125 | 150  | 200  |
| d fixed flange | 10  | 10  | 15  | 15  | 15  | 15  | 20  | 20  | 20  | 20   | 25   |
| d              | 40  | 45  | 58  | 68  | 78  | 88  | 102 | 122 | 138 | 158  | 212  |
| а              | 10  | 10  | 12  | 12  | 12  | 12  | 14  | 14  | 16  | 16   | 18   |
| 1              | 108 | 110 | 122 | 135 | 140 | 148 | 160 | 167 | 191 | 205  | 235  |
| 12             | 65  | 65  | 75  | 80  | 80  | 80  | 90  | 90  | 100 | 100  | 115  |
| h              | 90  | 95  | 95  | 100 | 105 | 110 | 125 | 135 | 145 | 160  | 195  |
| G approx.      | 1.5 | 1.7 | 2.1 | 2.7 | 3.4 | 4.0 | 5.3 | 6.5 | 8.5 | 10.5 | 17.8 |

Choice of steel materials: see chapter 7.2

When ordering, please specify:

1. Nominal diameter (DN) of the piping, material no., nominal length (NL) 2. Type of connection fitting, material no. 3. Max. operating pressure, max. operating temperature 4. Flow medium for pipeline and coated pipeline 5. Mounting position and movement 6. Categorisation according to pressure device guidelines. Alternative connection fittings on request.

- Inner hose: loose flange DIN PN 16 or 40, welded
- Outer hose:

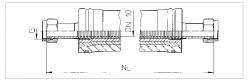
threaded coupling male thread made of malleable iron, cone sealing, with Whitworth pipe thread DIN 2999 (ISO 7/1), brazed

| Connection fitting | Material                            |                                | Permissible operating temperature |            |  |  |
|--------------------|-------------------------------------|--------------------------------|-----------------------------------|------------|--|--|
| type               | Flange<br>inner hose                | Screw connection<br>outer hose | Inner hose                        | Outer hose |  |  |
| 1AA1RR0            | Steel                               | Malleable iron                 | 300 °C                            | 300 °C     |  |  |
| 1AA8RRO            | Stainless steel<br>1.4541 or 1.4571 | Malleable iron                 | 450 °C                            | 300 °C     |  |  |

With type 1AA8RR0, all the components in contact with the medium in the piping are made of stainless steel

## Dimensions in mm, weight G in kg

| DN inner hose       | 10    | 16    | 20    | 25    | 32    | 40    | 50    | 65    | 80    | 100   | 150  |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| DN outer hose       | 25    | 32    | 40    | 50    | 50    | 65    | 80    | 100   | 125   | 150   | 200  |
| d threaded coupling | R 3/8 | R 3/8 | R 1⁄2 | R 1/2 | R 1/2 | R 1⁄2 | R 3⁄4 | R 3⁄4 | R 3⁄4 | R 3⁄4 | R 1  |
| d                   | 40    | 45    | 58    | 68    | 78    | 88    | 102   | 122   | 138   | 158   | 212  |
| а                   | 10    | 10    | 12    | 12    | 12    | 12    | 14    | 14    | 16    | 16    | 18   |
| 1                   | 108   | 110   | 122   | 135   | 140   | 148   | 160   | 167   | 191   | 205   | 235  |
| 12                  | 65    | 65    | 75    | 80    | 80    | 80    | 90    | 90    | 100   | 100   | 115  |
| h                   | 85    | 90    | 105   | 110   | 115   | 120   | 135   | 145   | 155   | 170   | 210  |
| G approx.           | 1.1   | 1.3   | 1.7   | 2.3   | 3.0   | 3.5   | 4.7   | 5.8   | 7.8   | 9.7   | 17.0 |

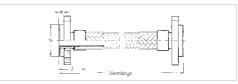

When ordering, please specify:

(HYDRA®)

1. nominal diameter (DN) of piping, material no., nominal length (NL) 2. type of connection fitting, material no. 3. max. operating pressure, max. operating temperature 4. flow medium for inner and outer coated pipelines 5. mounting situation and movement 6. classification according to pressure device guidelines. Alternative connection fittings on request.



#### **HYDRA** insulating hose




- Material annularly corrugated hose: 1.4404
- Material union nut: 1.4301 or similar
- Medium temperature: max. 300 °C
- Operating pressure:
   16 bar at 20 °C
   8.5 bar at 300 °C
- Dimensions and connections:

| DN | G        | Permissible operating<br>pressure<br>at 20 °C | Outside diameter | Nominal length<br>NL |  |  |
|----|----------|-----------------------------------------------|------------------|----------------------|--|--|
| -  | -        | P <sub>perm</sub>                             | -                | -                    |  |  |
| -  | -        | bar                                           | mm               | mm                   |  |  |
| 10 | M 16 x 1 | 16                                            | 40               | 500 1000 1500 2000   |  |  |

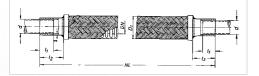
Different length and fittings on request

## PTFE-clad HYDRA hose assemblies



Liner:

PTFE according to ASTM D 4895 Standard wall thickness 1.8 mm optionally 3, 4 or 5 mm.


- Braiding and protective cover hose: 1.4301
- Media temperature: -40 °C to 230 °C
- Connections:

double-sided collar pipes with loose steel or stainless steel flanges

| DN  | d   | а  | I  | Minimum<br>bending<br>radius | Permissible<br>operating<br>pressure<br>at 20 °C | Permissible<br>underpres-<br>sure<br>at 20 °C | Weight<br>of<br>hose | Connector<br>weight | max.<br>nominal<br>length |
|-----|-----|----|----|------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------|---------------------|---------------------------|
| -   | -   | -  | -  | r <sub>min</sub>             | P <sub>perm</sub>                                | -                                             | -                    | -                   | -                         |
| -   | mm  | mm | mm | mm                           | bar                                              | bar                                           | kg/m                 | kg                  | m                         |
| 15  | 45  | 10 | 36 | 325                          | 25                                               | 0.35                                          | 0.35                 | 0.77                | 6                         |
| 20  | 58  | 12 | 40 | 325                          | 25                                               | 0.35                                          | 1.00                 | 1.05                | 6                         |
| 25  | 68  | 12 | 43 | 350                          | 25                                               | 0.35                                          | 1.29                 | 1.34                | 6                         |
| 32  | 78  | 12 | 48 | 400                          | 25                                               | 0.35                                          | 1.52                 | 1.97                | 6                         |
| 40  | 88  | 12 | 52 | 550                          | 25                                               | 0.35                                          | 2.40                 | 2.25                | 6                         |
| 50  | 102 | 14 | 52 | 750                          | 25                                               | 0.35                                          | 2.79                 | 2.74                | 6                         |
| 65  | 122 | 14 | 54 | 1000                         | 20                                               | 0.5                                           | 4.80                 | 3.70                | 6                         |
| 80  | 138 | 16 | 70 | 1300                         | 16                                               | 0.5                                           | 5.73                 | 4.55                | 6                         |
| 100 | 158 | 16 | 73 | 1500                         | 12.5                                             | 0.7                                           | 8.06                 | 5.17                | 6                         |



#### HYDRA vibration absorber



HYDRA vibration absorbers are primarily used in refrigeration engineering.

- DN 8 to DN 50: annularly corrugated hose material 2.1010 braiding material 2.1016
- DN 65 to DN 100: annularly corrugated hose material 1.4404 or 1.4541 braiding material 1.4301
- Media temperature: -70 °C to 200 °C
- Frost proof
- Operating pressure: 30 bar at 20 °C

At a higher temperature, pressure is to be reduced according to table 6.1.1. Safety factor against bursting S > 3

- Permissible vibration amplitudes:
  - ± 1 mm in permanent use
- ± 5 mm at switching on/off
- Stability:

HYDRA vibration absorbers are resistant to common, non-corrosive refrigerants such as R134a or R502. Ammonia refrigerant NH<sub>3</sub> (R717) requires the use of stainless steel vibration absorbers.

Dimensions and connections:

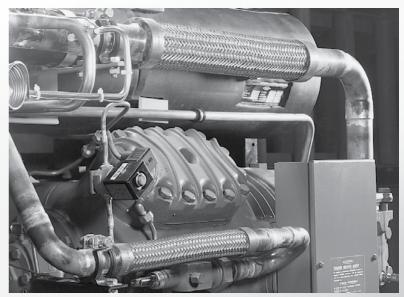
HYDRA compensation absorbers are available with connection ends in metric or in imperial dimensions. The internal braze ends are designed in such a way that they can be pushed directly onto copper pipes without additional braze fittings and connected using capillary brazing. They can optionally be supplied with extended internal braze ends.

Versions available ex works:

VX 11 Connecting dimensions according to DIN 2856, standard braze ends VX 12 Connecting dimensions according to DIN 2856, extended braze ends VX 21 Connecting dimensions according to ASME/ANSI/B 16.22, standard braze ends

Available short term by agreement:

VX 22 Connecting dimensions according to ASME/ANSI/B 16.22, extended braze ends


VX 31 Connecting dimensions according to DIN 2856, standard and extended braze ends

VX 33 Connecting dimensions according to ASME/ANSI/B 16.22, standard barze ends and extended braze ends

VX 41 Connecting dimensions according to DIN EN ISO 1127 D3/T3

Label:

Trade mark, type, nominal pressure, year of manufacture, connection for outer pipe diameter



1301uk/8/05/20/pdf

(HYDRA®)

WITZENMANN

189

| RS 32 | 21 narrow cor | rugation, high | ly flexible | RS 3 | 331/330/430 | ) standard co | rugation  |     | RS 341 wi | de corrugati  | ion       |
|-------|---------------|----------------|-------------|------|-------------|---------------|-----------|-----|-----------|---------------|-----------|
| DN    | Туре          | Connection te  | echnology   | DN   | Туре        | Connection te | echnology | DN  | Туре      | Connection te | echnology |
|       |               | Welded         | Brazed      |      |             | Welded        | Brazed    |     |           | Welded        | Brazed    |
| -     | -             | PN             | PN          | -    | -           | PN            | PN        | -   | -         | PN            | PN        |
| 6     | RS 321L00     | 16             | 4           | 6    | RS 331L00   | 16            | 4         | 6   | RS 341L00 | 16            | 4         |
| 6     | RS 321L12     | 16             | 4           | 6    | RS 331L12   | 16            | 4         | 0   | RS 341L12 | 16            | 4         |
| 8     | RS 321L00     | 16             | 4           | 8    | RS 331L00   | 16            | 4         | 8   | RS 341L00 | 16            | 4         |
| 8     | RS 321L12     | 16             | 4           | 8    | RS 331L12   | 16            | 4         | 0   | RS 341L12 | 16            | 4         |
| 10    | RS 321L00     | 10             | 4           | 10   | RS 331L00   | 16            | 4         | 10  | RS 341L00 | 16            | 4         |
| 10    | RS 321L12     | 16             | 4           | 10   | RS 331L12   | 16            | 4         | 10  | RS 341L12 | 16            | 4         |
| 12    | RS 321L00     | 6              | 4           | 12   | RS 331L00   | 10            | 4         | 12  | RS 341L00 | 16            | 4         |
| 12    | RS 321L12     | 16             | 4           | 12   | RS 331L12   | 16            | 4         | 12  | RS 341L12 | 16            | 4         |
| 16    | RS 321L00     | 6              | 4           | 16   | RS 331L00   | 6             | 4         | 16  | RS 341L00 | 16            | 4         |
| 16    | RS 321L12     | 16             | 4           | 16   | RS 331L12   | 16            | 4         | 10  | RS 341L12 | 16            | 4         |
| 20    | RS 321L00     | 4              | 4           | 20   | RS 331L00   | 4             | 4         | 20  | RS 341L00 | 16            | 4         |
| 20    | RS 321L12     | 16             | 4           | 20   | RS 331L12   | 16            | 4         | 20  | RS 341L12 | 16            | 4         |
| 25    | RS 321L00     | 4              | 4           | 25   | RS 331L00   | 4             | 4         | 25  | RS 341L00 | 16            | 4         |
| 25    | RS 321L12     | 16             | 5           | 25   | RS 331L12   | 16            | 4         | 20  | RS 341L12 | 16            | 4         |
| 32    | RS 321L00     | 2,5            | 1           | 32   | RS 331L00   | 2,5           | 1         | 32  | RS 341L00 | 2,5           | 1         |
| 32    | RS 321L12     | 16             | 1           | 32   | RS 331L12   | 16            | 1         | 32  | RS 341L12 | 16            | 1         |
| 40    | RS 321L00     | 0,5            | 0,5         | 40   | RS 331L00   | 2,5           | 1         | 40  | RS 341L00 | 2,5           | 1         |
| 40    | RS 321L12     | 16             | 1           | 40   | RS 331L12   | 16            | 1         | 40  | RS 341L12 | 16            | 1         |
| 50    | RS 321L00     | 0,5            | 0,5         | 50   | RS 331L00   | 0,5           | 0,5       | 50  | RS 341L00 | 2,5           | 1         |
| 50    | RS 321L12     | 16             | 1           | 50   | RS 331L12   | 16            | 1         | 50  | RS 341L12 | 16            | 1         |
|       |               |                |             | 65   | RS 331L00   | 0,5           | 0,5       | 65  | RS 341L00 | 4             | -         |
|       |               |                |             | 65   | RS 331L12   | 16            | 1         | 00  | RS 341L12 | 16            | -         |
|       |               |                |             | 80   | RS 331L00   | 0,5           | 0,5       | 80  | RS 341L00 | 4             | -         |
|       |               |                |             | 80   | RS 331L12   | 16            | 1         | 00  | RS 341L12 | 16            | -         |
|       |               |                |             | 100  | RS 331L00   | 0,5           | 0,5       | 100 | RS 341L00 | 2,5           | -         |
|       |               |                |             | 100  | RS 331L12   | 10            | 1         | 100 | RS 341L12 | 16            | -         |
|       |               |                |             | 100  | RS 430L22   | 16            | -         |     |           |               |           |
|       |               |                |             | 125  | RS 330L00   | 0,5           | -         |     |           |               |           |
|       |               |                |             | 125  | RS 330L12   | 6             | -         |     |           |               |           |
|       |               |                |             | 125  | RS 430L22   | 16            | -         |     |           |               |           |
|       |               |                |             | 150  | RS 330L00   | 0,5           | -         |     |           |               |           |
|       |               |                |             | 150  | RS 330L12   | 6             | -         |     |           |               |           |
|       |               |                |             | 150  | RS 430L92   | 16            | -         | _   |           |               |           |

\* The details in brackets apply to sealing connections in the thread.

Annularly corrugated hoses, ranges RS 331 S 00 and S 12, DN 6 to DN 150 are approved for nominal pressures up to a maximum of 16 bar according to DIN 3384. Dimensions, see chapter 6.3. The nominal pressure levels in accordance with DIN 3384 are detailed below. Only standard fittings approved according to DIN 3384 may be used for connecting the hose assembly to the gas supply.



(HYDRA)


## **Connection fittings**

Type MH 02/12/22/52S Hexagon nipple with Whitworth external thread DIN FN 10226 (ISO 7/1)

Type MH 32S Hexagon nipple with Whitworth external thread DIN FN 10226 (ISO 7/1)

Type NA 12/22/52S Collar pipe, flat sealing, union nut with Whitworth pipe thread ISO 228/1

Type LA 12/22/52S Hexagon socket with Whitworth internal thread **DIN EN 10226** (ISO 7/1)





Type RF 12/22/52W Threaded fitting conical sealing Whitworth external thread **DIN EN 10226** (ISO 7/1)

Type NF 12/22/52S

Ball type bushing

union nut with

Whitworth pipe

Type NN 12/220,

24° sealing cone

DIN ISO 12151-2

Type RF 02S/92S

Threaded fitting

conical sealing

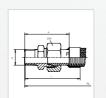
with Whitworth

external thread

**DIN EN 10226** 

(ISO 7/1)

DIN 3863,


thread

ISO 228/1

NN 12/22R

with O-ring,

union nut



# 6.5 HYDRA® annular corrugation hose assemblies

#### **Connection fittings**

Type QB 12/22/52W/92S Threaded fitting conical sealing Whitworth internal thread DIN FN 10226 (ISO 7/1)







Type QA 02S Threaded fitting flat sealing Whitworth internal DIN FN 10226

Type QB 02S/92S Threaded fitting conical sealing Whitworth internal thread **DIN EN 10226** (ISO 7/1)

Type RE 02S/92S Threaded fitting flat sealing Whitworth external thread **DIN EN 10226** (ISO 7/1)



#### Type UA 12/22S, UD 12/22Q Welding end with ISO pipe dimensions

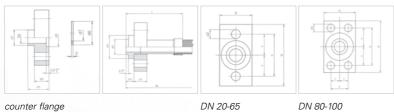






Type GB 12/22E GB 12/22/82 Flange connection, fixed




192 WITZENMANN



thread (ISO 7/1)

## 6.5 HYDRA® annular corrugation hose assemblies

#### HYDRA hose assemblies for presses



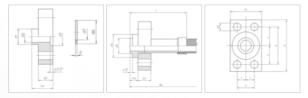
- Annularly corrugated hose from butt-welded pipe, hydraulically shaped
- Versions: preferably RS 430 S22 with double braid and abrasion protection
- Maximum finished length: DN 20 to DN 125 → 10 m
  - DN 150 to DN 300  $\rightarrow$  3 m

Longer hose assemblies can be constructed out of sections on request.

- Standard materials: annularly corrugated hose 1.4404 or 1.4541, braiding 1.4301
- Flanges:
  - a) standard flanges

b) rectangular flanges with the geometry described below

## Type BS16E – Rectangular flanged joint, swivelling


Collar pipes with projecting part and loose rectangular flange according to PN 16, made of steel, welded

| DN  |     | Collar pipes and loose rectangular flange<br>PN 16 |     |     |    |    |     |       |     |    |  |
|-----|-----|----------------------------------------------------|-----|-----|----|----|-----|-------|-----|----|--|
| -   | а   | b                                                  | С   | f   | d2 | b1 | d4  | d5    | I   | h3 |  |
|     |     |                                                    |     |     |    |    |     |       |     |    |  |
| -   | mm  | mm                                                 | mm  | mm  | mm | mm | mm  | mm    | mm  | mm |  |
| 20  | 95  | 50                                                 | 65  |     | 14 | 25 | 45  | 29.4  | 110 | 16 |  |
| 25  | 105 | 70                                                 | 75  |     | 14 | 30 | 55  | 36.4  | 119 | 16 |  |
| 32  | 125 | 70                                                 | 85  |     | 18 | 30 | 60  | 45    | 135 | 16 |  |
| 40  | 130 | 90                                                 | 95  |     | 18 | 30 | 72  | 56    | 146 | 16 |  |
| 50  | 160 | 100                                                | 115 |     | 22 | 40 | 85  | 68.3  | 171 | 18 |  |
| 65  | 190 | 120                                                | 135 |     | 26 | 40 | 100 | 88    | 220 | 18 |  |
| 80  | 200 | 150                                                | 145 | 90  | 22 | 40 | 135 | 106.5 | 234 | 20 |  |
| 100 | 250 | 180                                                | 180 | 110 | 30 | 60 | 160 | 131.5 | 254 | 22 |  |

| DN  |       | Counter<br>PN |    |    | Gas | sket |        | bolts with<br>and nuts | U U                          | connectors<br>rox.        |
|-----|-------|---------------|----|----|-----|------|--------|------------------------|------------------------------|---------------------------|
| -   | d1    | d3            | h1 | b1 | d6  | d7   | Thread | Bolt<br>length         | Without<br>counter<br>flange | With<br>counter<br>flange |
| -   | mm    | mm            | mm | mm | mm  | mm   |        | mm                     | kg                           | kg                        |
| 20  | 26.9  | 31            | 36 | 25 | 30  | 20   | M12    | 80                     | 1.04                         | 1.75                      |
| 25  | 33.7  | 38            | 42 | 30 | 37  | 25   | M12    | 90                     | 1.90                         | 3.28                      |
| 32  | 42.4  | 47            | 42 | 30 | 46  | 32   | M16    | 90                     | 2.25                         | 3.76                      |
| 40  | 48.3  | 58            | 42 | 30 | 57  | 40   | M16    | 90                     | 2.90                         | 4.98                      |
| 50  | 60.3  | 70            | 52 | 40 | 69  | 50   | M20    | 120                    | 5.01                         | 8.65                      |
| 65  | 76.1  | 90            | 52 | 40 | 89  | 65   | M24    | 120                    | 7.01                         | 12.10                     |
| 80  | 88.9  | 109           | 52 | 40 | 108 | 80   | M20    | 120                    | 9.34                         | 15.90                     |
| 100 | 114.3 | 134           | 72 | 60 | 133 | 100  | M27    | 180                    | 19.20                        | 33.40                     |

(HYDRA®)

## HYDRA hose assemblies for presses



#### counter flange

# Type BS16G - rotatable rectangular flanged joint

Collar pipes with projecting part and loose rectangular flange according to PN 25/40, made of steel, welded

| DN  |     |     |     | Collar pip |    | se rectangi<br>25/40 | ular flange |       |     |    | DN  |       | Counter<br>PN 2 |    |    | Gas | sket |        | bolts with<br>and nuts |
|-----|-----|-----|-----|------------|----|----------------------|-------------|-------|-----|----|-----|-------|-----------------|----|----|-----|------|--------|------------------------|
| -   | а   | b   | C   | f          | d2 | b1                   | d4          | d5    | I   | h3 | -   | d1    | d3              | h1 | b1 | d6  | d7   | Thread | Bolt<br>length         |
| -   | mm  | mm  | mm  | mm         | mm | mm                   | mm          | mm    | mm  | mm | -   | mm    | mm              | mm | mm | mm  | mm   | -      | mm                     |
| 20  | 95  | 50  | 65  | 25         | 11 | 25                   | 45          | 29.4  | 110 | 16 | 20  | 26.9  | 31              | 36 | 25 | 30  | 20   | M10    | 80                     |
| 25  | 105 | 70  | 75  | 40         | 14 | 30                   | 55          | 36.4  | 119 | 16 | 25  | 33.7  | 38              | 42 | 30 | 37  | 25   | M12    | 90                     |
| 32  | 125 | 70  | 85  | 35         | 18 | 35                   | 60          | 45    | 135 | 16 | 32  | 42.4  | 47              | 47 | 35 | 46  | 32   | M16    | 110                    |
| 40  | 125 | 90  | 85  | 50         | 18 | 40                   | 72          | 56    | 146 | 16 | 40  | 48.3  | 58              | 52 | 40 | 57  | 40   | M16    | 120                    |
| 50  | 150 | 100 | 105 | 55         | 22 | 50                   | 85          | 68.3  | 171 | 18 | 50  | 60.3  | 70              | 62 | 50 | 69  | 50   | M20    | 140                    |
| 65  | 175 | 120 | 125 | 65         | 26 | 60                   | 100         | 88    | 220 | 18 | 65  | 76.1  | 90              | 72 | 60 | 89  | 65   | M24    | 160                    |
| 80  | 210 | 150 | 150 | 90         | 30 | 60                   | 135         | 106.5 | 234 | 20 | 80  | 88.9  | 109             | 72 | 60 | 108 | 80   | M27    | 180                    |
| 100 | 250 | 180 | 180 | 110        | 36 | 80                   | 160         | 131.5 | 254 | 22 | 100 | 114.3 | 134             | 94 | 80 | 133 | 100  | M33    | 220                    |

Weight of connectors approx.

With

counter flange

kg

1.73

3.12

4.0

5.76

9.11

14.5

22.7

41.2

Without

counter

flange kg

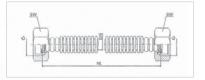
1.03

1.82

2.37

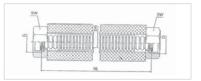
3.29

5.24


8.2

12.7

23.1


Hydraflex HX 711 - hose assemblies for semi-flexible pipework

#### Hydraflex HX 411 - hose assemblies for semi-flexible piping



- Semi-flexible annularly corrugated hose without braiding, mechanically corrugated with flat-sealing brass union nuts
- Length tolerance:
- NL  $\leq$  1000 mm: +15 mm / -10 mm
- NL > 1000 mm: +1.5 % / -1.0 %
- Standard material: 1.4541

| DN | Connection<br>DIN-ISO 228/1 | WAF1 | Permissible operating<br>pressure<br>at 20°C | Minimum<br>bending<br>radius | Weight<br>Approx.              | Nominal<br>length         |
|----|-----------------------------|------|----------------------------------------------|------------------------------|--------------------------------|---------------------------|
| -  | -                           | -    | P <sub>perm</sub>                            | <b>r</b> <sub>min</sub>      | -                              | -                         |
| -  | Inch                        | mm   | bar                                          | mm                           | kg/component                   | NL (mm)                   |
| 10 | G 3/8                       | 19   | 21                                           | 18                           | 0.050<br>0.070<br>0.10<br>1.12 | 300<br>500<br>800<br>1000 |
| 12 | G 1/2                       | 24   | 21                                           | 20                           | 0.070<br>0.090<br>0.12<br>0.14 | 300<br>500<br>800<br>1000 |
| 16 | G 3/4                       | 30   | 16                                           | 25                           | 0.12<br>0.14<br>0.20<br>0.22   | 300<br>500<br>800<br>1000 |
| 20 | G 1                         | 38   | 10                                           | 30                           | 0.20<br>0.24<br>0.29<br>0.32   | 300<br>500<br>800<br>1000 |
| 25 | G 1 1/3                     | 46   | 10                                           | 35                           | 0.36<br>0.50                   | 500<br>1000               |



- Insulated semi-flexible annularly corrugated hose without braiding, mechanically corrugated with flat-sealing brass union nuts
- Length tolerance: NL ≤ 1000 mm: +15 mm / -10 mm
  - $NL \le 1000 \text{ mm} + 15 \text{ mm} / -10 \text{ mm}$
  - NL > 1000 mm: +1.5 % / -1.0 %
- Standard material: 1.4541

| DN | G DIN-ISO<br>228/1 connec-<br>tion | WAF1 | Permissible operating<br>pressure<br>at 20°C | Minimum<br>bending<br>radius | Weight<br>Approx.             | Nominal<br>length         |
|----|------------------------------------|------|----------------------------------------------|------------------------------|-------------------------------|---------------------------|
| -  | -                                  | -    | P <sub>perm</sub>                            | r <sub>min</sub>             | -                             | -                         |
| -  | Inch                               | mm   | bar                                          | mm                           | kg/component                  | NL (mm)                   |
| 10 | G 3/8                              | 19   | 21                                           | 18                           | 0.080<br>0.10<br>0.15<br>0.18 | 300<br>500<br>800<br>1000 |
| 12 | G 1/2                              | 24   | 21                                           | 20                           | 0.10<br>0.13<br>0.18<br>0.21  | 300<br>500<br>800<br>1000 |
| 16 | G 3/4                              | 30   | 16                                           | 25                           | 0.15<br>0.20<br>0.25<br>0.30  | 300<br>500<br>800<br>1000 |
| 20 | G 1                                | 38   | 10                                           | 30                           | 0.23<br>0.30<br>0.40<br>0.45  | 300<br>500<br>800<br>1000 |
| 25 | G 1 1/3                            | 46   | 10                                           | 35                           |                               | 500<br>1000               |

(HYDRA®)

(HYDRA®)

# Protective hoses, type SG without coating

according to DIN EN ISO 15465 (type SOU), DIN EN 50086-2-3



## Applications

- Protective hose type SG according to DIN EN ISO 15465 (type SOU)
- Standard protective hose for electrical installations with VDE approvalaccording to DIN EN 50086-2-3
- Protective hose for rubber and plastic hoses

# Characteristics

- Very flexible
- Tension-proof
- With high crushing strength

## Design

- Stripwound metal hose
- Interlocked profile
- Round cross-section

## Labelling

HYDRA AS < VDE > galvanised, without coating but with PG dimensions only

## Materials

- Galvanised steel (1.0330) to DN 18
- Hot-dip galvanised steel (1.0226) from DN 20
- Brass (2.0321)
- Stainless steel (1.4301)

## Versions

- Zinc-plated steel without coating
- Bright brass, nickel-plated or chromium-plated
- Stainless steel without coating

## **Operating temperature**

- Brass: 250 °C
- Zinc-plated steel: 400 °C
- Stainless steel: 600 °C (for VDE-approved applications: -15 °C to +60 °C)

# Classification

Without coating 01-02-03-04-05-06-07-08-09-10-11-12 --3--3---4---1--4---0---2---1--3-3 (DN 8) --3--3---4---1--4---0---2---2---2---1--3

--3--3---2---2---1--3 (DN 11-51)

## **Production lengths**

Measured in expanded position

- DN 3 to 11: 50 and 100 m collars
- DN 14 to 23: 25 and 50 m collars
- DN 31: 25 m collars

## Supplied as follows

Bundled in rings

# Types

- Protective hose, galvanised steel, type SG-S-O
- Protective hose, bright brass, type SG-M-O
- Protective hose, chromium-plated brass, type SG-M-C
- Protective hose, nickel-plated brass, type SG-M-N
- Protective hose, stainless steel, type SG-E-O



# HYDRA protective hoses, type SG-S-O

according to DIN EN ISO 15465 (type SOU), DIN EN 61386-2-3

| DN  | Nominal size | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum<br>bending<br>radius | Weight<br>approx. |
|-----|--------------|-----------------|------------------|--------------------------|------------------------------|-------------------|
| -   | PG           | d               | D                | d, D                     | r <sub>min</sub>             | -                 |
| -   | DIN 40430    | mm              | mm               | mm                       | mm                           | kg/m              |
| 3   | -            | 3.0             | 4.6              | ± 0.2                    | 18                           | 0.028             |
| 4   | -            | 4.0             | 5.8              | ± 0.2                    | 19                           | 0.035             |
| 5   | -            | 5.0             | 6.8              | ± 0.2                    | 20                           | 0.045             |
| 6   | -            | 6.0             | 8.0              | ± 0.3                    | 21                           | 0.050             |
| 7   | -            | 7.1             | 9.1              | ± 0.3                    | 23                           | 0.060             |
| 8*  | 7            | 8.0             | 10.0             | ± 0.3                    | 25                           | 0.065             |
| 9   | -            | 9.0             | 11.0             | ± 0.3                    | 30                           | 0.075             |
| 10  | -            | 10.0            | 13.0             | ± 0.3                    | 32                           | 0.11              |
| 11* | 9            | 11.0            | 14.0             | ± 0.3                    | 34                           | 0.12              |
| 12  | -            | 12.0            | 15.0             | ± 0.3                    | 36                           | 0.13              |
| 13  | -            | 13.0            | 16.0             | ± 0.3                    | 40                           | 0.14              |
| 14  | -            | 13.5            | 16.5             | ± 0.3                    | 40                           | 0.135             |
| 14* | 11           | 14.0            | 17.0             | ± 0.3                    | 40                           | 0.145             |
| 15  | -            | 15.0            | 18.0             | ± 0.3                    | 45                           | 0.155             |
| 16* | 13.5         | 16.0            | 19.0             | ± 0.3                    | 45                           | 0.165             |
| 17  | -            | 17.0            | 20.0             | ± 0.3                    | 50                           | 0.175             |
| 18* | 16           | 18.0            | 21.0             | ± 0.3                    | 50                           | 0.185             |
| 20  | -            | 20.0            | 24.0             | ± 0.3                    | 60                           | 0.28              |
| 21  | -            | 21.0            | 25.0             | ± 0.3                    | 62                           | 0.295             |
| 22  | -            | 21.8            | 25.8             | ± 0.3                    | 65                           | 0.305             |
| 23* | 21           | 23.0            | 27.0             | ± 0.3                    | 67                           | 0.32              |
| 25  | -            | 25.0            | 29.0             | ± 0.3                    | 75                           | 0.345             |
| 28  | -            | 28.0            | 32.0             | ± 0.3                    | 80                           | 0.385             |
| 29  | -            | 29.2            | 34.2             | ± 0.4                    | 85                           | 0.415             |
| 30  | -            | 30.0            | 35.0             | ± 0.4                    | 85                           | 0.43              |
| 31* | 29           | 31.0            | 36.0             | ± 0.4                    | 90                           | 0.445             |
| 32  | -            | 32.0            | 37.0             | ± 0.4                    | 90                           | 0.455             |
| 35  | -            | 35.0            | 40.0             | ± 0.4                    | 95                           | 0.495             |

| DN  | Nominal size | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum<br>bending<br>radius | Weight<br>approx. |
|-----|--------------|-----------------|------------------|--------------------------|------------------------------|-------------------|
| -   | PG           | d               | D                | d, D                     | r <sub>min</sub>             | -                 |
| -   | DIN 40430    | mm              | mm               | mm                       | mm                           | kg/m              |
| 36  | -            | 36.0            | 41.0             | ± 0.4                    | 100                          | 0.51              |
| 37  | -            | 37.0            | 42.0             | ± 0.4                    | 105                          | 0.53              |
| 38  | -            | 38.2            | 43.2             | ± 0.4                    | 105                          | 0.54              |
| 40* | 36           | 40.0            | 45.0             | ± 0.4                    | 110                          | 0.56              |
| 45  | -            | 45.2            | 50.2             | ± 0.4                    | 120                          | 0.63              |
| 47* | 42           | 47.0            | 52.0             | ± 0.4                    | 125                          | 0.66              |
| 48  | -            | 48.0            | 53.0             | ± 0.5                    | 125                          | 0.67              |
| 49  | -            | 49.2            | 54.2             | ± 0.5                    | 125                          | 0.68              |
| 50  | -            | 50.0            | 55.0             | ± 0.5                    | 125                          | 0.70              |
| 51* | 48           | 51.0            | 56.0             | ± 0.5                    | 130                          | 0.71              |

\* Version according to VDE. Please provide the following information when ordering: type of hose, nominal diameter (DN), length

(HYDRA®)

(HYDRA)

#### HYDRA protective hoses, type SG-M-C, SG-M-N

Nickel-plated or chromium-plated brass

| DN | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum bending<br>radius | Weight<br>approx. |
|----|-----------------|------------------|--------------------------|---------------------------|-------------------|
| -  | d               | D                | d, D                     | r <sub>min</sub>          | -                 |
| -  | mm              | mm               | mm                       | mm                        | kg/m              |
| 3  | 2.4             | 3.8              | ± 0.2                    | 15                        | 0.030             |
| 3  | 2.6             | 3.0              | ± 0.2                    | 15                        | 0.030             |
| 3  | 3.0             | 4.5              | ± 0.2                    | 15                        | 0.031             |
| 3  | 3.2             | 4.7              | ± 0.2                    | 15                        | 0.032             |
| 4  | 3.5             | 5.0              | ± 0.2                    | 15                        | 0.033             |
| 4  | 4.0             | 6.0              | ± 0.2                    | 20                        | 0.044             |
| 5  | 5.0             | 7.0              | ± 0.2                    | 20                        | 0.050             |
| 6  | 6.0             | 8.0              | ± 0.2                    | 20                        | 0.056             |
| 7  | 7.0             | 9.0              | ± 0.2                    | 20                        | 0.074             |
| 8  | 8.0             | 9.0              | ± 0.2                    | 25                        | 0.084             |
| 9  | 9.0             | 11.0             | ± 0.2                    | 25                        | 0.105             |
| 10 | 10.0            | 13.0             | ± 0.3                    | 25                        | 0.104             |
| 12 | 11.5            | 14.0             | ± 0.3                    | 30                        | 0.103             |
| 12 | 12.0            | 15.0             | ± 0.3                    | 30                        | 0.115             |
| 13 | 13.0            | 16.0             | ± 0.3                    | 35                        | 0.119             |
| 14 | 14.0            | 17.4             | ± 0.3                    | 35                        | 0.148             |
| 15 | 15.0            | 18.0             | ± 0.3                    | 40                        | 0.157             |
| 16 | 16.0            | 19.2             | ± 0.3                    | 40                        | 0.205             |
| 17 | 17.0            | 20.0             | ± 0.3                    | 45                        | 0.218             |
| 18 | 18.0            | 21.3             | ± 0.3                    | 45                        | 0.238             |
| 19 | 19.0            | 22.0             | ± 0.3                    | 45                        | 0.268             |
| 20 | 20.0            | 23.0             | ± 0.3                    | 50                        | 0.282             |

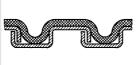
\* Version according to VDE. Please provide the following information when ordering: type of hose, nominal diameter (DN), length

#### HYDRA protective hoses, type SG-E-O

according to DIN EN ISO 15465 (type SOU), stainless steel

| DN | Inside diameter | Outside diameter | Permissible deviation | Minimum bending<br>radius | Weight<br>approx. |
|----|-----------------|------------------|-----------------------|---------------------------|-------------------|
| -  | d               | D                | d, D                  | r <sub>min</sub>          | -                 |
| -  | mm              | mm               | mm                    | mm                        | kg/m              |
| 2  | 1.4             | 3.0              | ± 0.1                 | 16                        | 0.020             |
| 3  | 3.0             | 4.6              | ± 0.2                 | 18                        | 0.030             |
| 4  | 4.0             | 5.8              | ± 0.2                 | 19                        | 0.035             |
| 5  | 5.0             | 6.8              | ± 0.2                 | 20                        | 0.040             |
| 6  | 6.0             | 8.0              | ± 0.3                 | 25                        | 0.050             |
| 7  | 7.0             | 9.0              | ± 0.3                 | 27                        | 0.060             |
| 8  | 8.0             | 10.0             | ± 0.3                 | 29                        | 0.065             |
| 9  | 9.0             | 11.0             | ± 0.3                 | 30                        | 0.075             |
| 10 | 10.0            | 13.0             | ± 0.3                 | 25                        | 0.105             |
| 11 | 11.0            | 14.0             | ± 0.3                 | 30                        | 0.115             |
| 12 | 12.0            | 15.0             | ± 0.3                 | 30                        | 0.125             |
| 13 | 13.0            | 16.0             | ± 0.3                 | 35                        | 0.135             |
| 14 | 14.0            | 17.4             | ± 0.3                 | 35                        | 0.14              |
| 15 | 15.0            | 18.0             | ± 0.3                 | 40                        | 0.16              |
| 16 | 16.0            | 19.2             | ± 0.3                 | 40                        | 0.17              |
| 17 | 17.0            | 20.0             | ± 0.3                 | 45                        | 0.175             |
| 18 | 18.0            | 21.3             | ± 0.3                 | 45                        | 0.185             |
| 19 | 19.0            | 23.0             | ± 0.3                 | 45                        | 0.235             |
| 20 | 20.0            | 24.0             | ± 0.3                 | 50                        | 0.25              |
| 20 | 21.5            | 25.5             | ± 0.3                 | 50                        | 0.265             |
| 22 | 22.0            | 26.0             | ± 0.3                 | 50                        | 0.27              |
| 23 | 23.0            | 27.0             | ± 0.3                 | 55                        | 0.285             |
| 25 | 24.5            | 28.5             | ± 0.3                 | 55                        | 0.305             |
| 25 | 25.0            | 29.0             | ± 0.3                 | 60                        | 0.315             |
| 26 | 26.0            | 30.0             | ± 0.3                 | 60                        | 0.325             |
| 27 | 27.0            | 31.0             | ± 0.3                 | 60                        | 0.335             |
| 28 | 28.0            | 32.0             | ± 0.3                 | 60                        | 0.35              |

\* Version according to VDE. Please provide the following information when ordering: type of hose, nominal diameter (DN), length


(HYDRA®)

(HYDRA)

## HYDRA protective hoses, type SG with PVC coating

according to DIN EN 61386-2-3 (VDE 0605 parts 2-3), galvanised steel with plastic coating





#### Applications

- Standard protective hose for electrical installations with VDE approval in accordance with DIN EN 61386-2-3
- Protective hose for rubber and plastic hoses

## Characteristics

- Very flexible
- Tension-proof
- With high crushing strength
- Liquid-tight
- With PVC coating

#### Design

- Stripwound metal hose
- Interlocked profile
- Round cross-section

#### Labelling

HYDRA ASF < VDE > zinc-plated, with coating, but PG dimensions only

#### Materials

- Galvanised, zinc-plated steel (1.0330) up to DN 18
- Hot-dip galvanised steel (1.0226) from DN 20

#### Version

Galvanised steel, with black PVC coating

#### Operating temperature

Galvanised steel with PVC coating: -20 °C to +80 °C (for VDE-approved applications: -15 °C to +60 °C)

# Classification

With coating 01-02-03-04-05-06-07-08-09-10-11-12 --3--3---3---1--4---1--4---0---3---1---1--3 (DN 7) --3--3---1--4---1--4---0---3---2---1--3 (DN 10-49)

## **Production lengths**

Measured in expanded position

- DN 4 to 11: 50 and 100 m collars
- DN 14 to 23: 25 and 50 m collars
- DN 31: 25 m collars

## Supplied as follows

Bundled in rings

# Туре

Protective hose, zinc-plated steel with black PVC coating, type SG-S-P



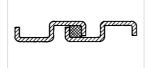
# HYDRA protective hoses, type SG-S-P

according to DIN EN 61386-2-3 (VDE 0605 parts 2-3), galvanised steel with plastic coating

| DN  | Nominal size | Inside diameter | Outside diameter | Permissible deviation | Minimum<br>bending<br>radius | Weight<br>approx. |
|-----|--------------|-----------------|------------------|-----------------------|------------------------------|-------------------|
| -   | PG           | d               | D                | d, D                  | r <sub>min</sub>             | -                 |
| -   | DIN 40430    | mm              | mm               | mm                    | mm                           | kg/m              |
| 4   | -            | 4.0             | 6.6              | ± 0.2                 | 23                           | 0.050             |
| 5   | -            | 5.0             | 7.6              | ± 0.2                 | 25                           | 0.055             |
| 6   | -            | 6.0             | 8.8              | ± 0.3                 | 28                           | 0.070             |
| 7*  | 7            | 7.1             | 9.9              | ± 0.3                 | 30                           | 0.075             |
| 8   | -            | 8.0             | 10.8             | ± 0.3                 | 34                           | 0.085             |
| 9   | -            | 9.0             | 11.8             | ± 0.3                 | 38                           | 0.095             |
| 10* | 9            | 10.0            | 14.0             | ± 0.3                 | 42                           | 0.14              |
| 11  | -            | 11.0            | 15.0             | ± 0.3                 | 46                           | 0.155             |
| 12  | -            | 12.0            | 16.0             | ± 0.3                 | 48                           | 0.165             |
| 13* | 11           | 13.0            | 17.0             | ± 0.3                 | 51                           | 0.175             |
| 14  | -            | 13.5            | 17.5             | ± 0.3                 | 51                           | 0.185             |
| 14  | -            | 14.0            | 18.2             | ± 0.3                 | 53                           | 0.195             |
| 15* | 13.5         | 15.0            | 19.2             | ± 0.3                 | 56                           | 0.21              |
| 16  | -            | 16.0            | 20.2             | ± 0.3                 | 58                           | 0.22              |
| 17* | 16           | 17.0            | 21.2             | ± 0.3                 | 60                           | 0.235             |
| 18  | -            | 18.0            | 22.2             | ± 0.3                 | 64                           | 0.245             |
| 20  | -            | 20.0            | 25.4             | ± 0.3                 | 69                           | 0.37              |
| 21  | -            | 21.0            | 26.4             | ± 0.3                 | 74                           | 0.385             |
| 22* | 21           | 21.8            | 27.2             | ± 0.3                 | 75                           | 0.40              |
| 23  | -            | 23.0            | 28.4             | ± 0.3                 | 77                           | 0.42              |
| 25  | -            | 25.0            | 30.4             | ± 0.3                 | 82                           | 0.45              |
| 28  | -            | 28.0            | 33.4             | ± 0.4                 | 90                           | 0.50              |
| 29* | 29           | 29.2            | 35.8             | ± 0.4                 | 93                           | 0.56              |
| 30  | -            | 30.0            | 36.6             | ± 0.4                 | 96                           | 0.58              |
| 31  | -            | 31.0            | 37.6             | ± 0.4                 | 98                           | 0.60              |
| 32  | -            | 32.0            | 38.6             | ± 0.4                 | 101                          | 0.615             |
| 35  | -            | 35.0            | 41.6             | ± 0.4                 | 109                          | 0.665             |

| DN  | Nominal size | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum<br>bending<br>radius | Weight<br>approx. |
|-----|--------------|-----------------|------------------|--------------------------|------------------------------|-------------------|
| -   | PG           | d               | D                | d, D                     | r <sub>min</sub>             | -                 |
| -   | DIN 40430    | mm              | mm               | mm                       | mm                           | kg/m              |
| 36  | -            | 36.0            | 42.6             | ± 0.4                    | 112                          | 0.685             |
| 38* | 36*          | 38.2            | 44.8             | ± 0.4                    | 117                          | 0.73              |
| 40* | -            | 40.0            | 46.6             | ± 0.4                    | 122                          | 0.765             |
| 45* | 42*          | 45.2            | 51.8             | ± 0.4                    | 136                          | 0.85              |
| 47  | -            | 47.0            | 53.8             | ± 0.4                    | 138                          | 0.905             |
| 48  | -            | 48.0            | 54.8             | ± 0.5                    | 142                          | 0.92              |
| 49* | 48*          | 49.2            | 56.0             | ± 0.5                    | 145                          | 0.95              |
| 50  | -            | 50.0            | 56.8             | ± 0.5                    | 148                          | 0.955             |
| 51  | -            | 51.0            | 57.8             | ± 0.5                    | 151                          | 0.975             |

\* Version according to VDE. Please provide the following information when ordering: type of hose, nominal diameter (DN), length


(HYDRA)

(HYDRA)

#### HYDRA protective hoses, type SD

Protective extraction and exhaust gas hoses





## Application

Universal protective hose with gasket, also usable as extraction and exhaust gas hose

## Characteristics

- Good flexibility
- Tension-proof
- With high crushing strength

## Design

- Wound metal hose
- Interlocked profile
- Round cross-section

## Materials

- Galvanised, zinc-plated steel (1.0330) up to DN 18
- Hot-dip galvanised steel (1.0226) from DN 20
- Stainless steel (1.4301)

## Versions

- With rubber joint G
- With cotton packing B
- With ceramic seal K

## **Operating temperature**

- Zinc-plated with rubber joint: 60 °C
- Zinc-plated with cotton packing: 120 °C
- Zinc-plated with ceramic seal: 400 °C
- Stainless steel with ceramic seal: 600 °C

## **Production lengths**

Measured in expanded position

- DN 8 to 11; 50 and 100 m collars
- DN 14 to 23; 25 and 50 m collars
- DN 31; 25 m collars

# Supplied as follows

Bundled in rings

# Types

- Extraction hose, zinc-plated steel, with cotton packing, type SD-S-B
- Extraction hose, zinc-plated steel, with rubber joint, type SD-S-G
- Extraction hose, zinc-plated steel, with ceramic seal, type SD-S-K
- Extraction hose, stainless steel, with ceramic seal, type SD-E-K



#### HYDRA protective hoses, type SD

Protective extraction and exhaust gas hoses, zinc-plated steel or stainless steel

| DN | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum bending<br>radius | Weight<br>approx. |
|----|-----------------|------------------|--------------------------|---------------------------|-------------------|
| -  | d               | D                | d, D                     | r <sub>min</sub>          | -                 |
| -  | mm              | mm               | mm                       | mm                        | kg/m              |
| 3  | 3.0             | 5.0              | ± 0.2                    | 40                        | 0.060             |
| 4  | 4.0             | 6.0              | ± 0.2                    | 40                        | 0.070             |
| 5  | 5.0             | 7.0              | ± 0.2                    | 40                        | 0.085             |
| 6  | 6.0             | 8.0              | ± 0.2                    | 35                        | 0.095             |
| 7  | 7.0             | 9.0              | ± 0.2                    | 35                        | 0.105             |
| 8  | 8.0             | 10.0             | ± 0.2                    | 40                        | 0.115             |
| 9  | 9.0             | 11.0             | ± 0.2                    | 40                        | 0.14              |
| 10 | 10.0            | 13.0             | ± 0.2                    | 45                        | 0.18              |
| 11 | 10.5            | 13.0             | ± 0.2                    | 45                        | 0.19              |
| 11 | 11.0            | 14.0             | ± 0.2                    | 55                        | 0.20              |
| 12 | 12.0            | 15.0             | ± 0.2                    | 55                        | 0.21              |
| 13 | 13.0            | 16.0             | ± 0.2                    | 60                        | 0.215             |
| 14 | 14.0            | 17.4             | ± 0.2                    | 60                        | 0.22              |
| 15 | 15.0            | 18.0             | ± 0.2                    | 70                        | 0.24              |
| 16 | 16.0            | 18.7             | ± 0.2                    | 70                        | 0.26              |
| 16 | 16.0            | 19.2             | ± 0.2                    | 70                        | 0.265             |
| 17 | 17.0            | 20.0             | ± 0.2                    | 80                        | 0.28              |
| 18 | 18.0            | 21.3             | ± 0.2                    | 80                        | 0.29              |
| 19 | 19.0            | 23.0             | ± 0.3                    | 80                        | 0.315             |
| 20 | 20.0            | 24.0             | ± 0.3                    | 90                        | 0.335             |
| 22 | 21.5            | 25.5             | ± 0.3                    | 90                        | 0.37              |
| 23 | 23.0            | 27.0             | ± 0.3                    | 95                        | 0.395             |
| 25 | 24.5            | 28.5             | ± 0.3                    | 95                        | 0.415             |
| 25 | 25.0            | 29.0             | ± 0.3                    | 105                       | 0.43              |
| 26 | 26.0            | 30.0             | ± 0.4                    | 105                       | 0.46              |
| 30 | 30.0            | 34.0             | ± 0.4                    | 110                       | 0.525             |
| 31 | 30.5            | 34.5             | ± 0.4                    | 110                       | 0.54              |
| 32 | 31.5            | 35.7             | ± 0.4                    | 120                       | 0.57              |
| 32 | 32.0            | 36.0             | ± 0.4                    | 120                       | 0.58              |

| DN  | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum bending<br>radius | Weight<br>approx. |
|-----|-----------------|------------------|--------------------------|---------------------------|-------------------|
| -   | d               | D                | d,D                      | r <sub>min</sub>          | -                 |
| -   | mm              | mm               | mm                       | mm                        | kg/m              |
| 34  | 34.0            | 38.5             | ± 0.4                    | 125                       | 0.585             |
| 35  | 35.0            | 39.5             | ± 0.4                    | 130                       | 0.60              |
| 36  | 36.0            | 41.5             | ± 0.4                    | 130                       | 0.64              |
| 37  | 37.0            | 42.5             | ± 0.4                    | 140                       | 0.68              |
| 38  | 38.0            | 43.5             | ± 0.4                    | 145                       | 0.72              |
| 39  | 38.5            | 44.0             | ± 0.4                    | 145                       | 0.76              |
| 40  | 40.0            | 45.0             | ± 0.4                    | 150                       | 0.83              |
| 41  | 40.5            | 45.7             | ± 0.4                    | 150                       | 0.95              |
| 44  | 44.0            | 49.5             | ± 0.4                    | 170                       | 1.010             |
| 45  | 45.0            | 50.5             | ± 0.4                    | 175                       | 1.030             |
| 47  | 46.5            | 52.5             | ± 0.4                    | 180                       | 1.070             |
| 48  | 48.0            | 53.5             | ± 0.5                    | 190                       | 1.10              |
| 50  | 50.0            | 56.0             | ± 0.5                    | 200                       | 1.16              |
| 52  | 52.0            | 58.0             | ± 0.5                    | 210                       | 1.30              |
| 53  | 53.0            | 59.0             | ± 0.5                    | 220                       | 1.35              |
| 55  | 55.0            | 61.0             | ± 0.5                    | 250                       | 1.40              |
| 60  | 60.0            | 66.0             | ± 0.6                    | 260                       | 1.59              |
| 65  | 65.0            | 72.0             | ± 0.6                    | 270                       | 1.95              |
| 70  | 70.0            | 77.0             | ± 0.6                    | 280                       | 2.10              |
| 75  | 75.0            | 82.0             | ± 0.6                    | 290                       | 2.25              |
| 80  | 80.0            | 87.0             | ± 0.6                    | 300                       | 2.40              |
| 90  | 90.0            | 100.0            | ± 0.7                    | 315                       | 2.62              |
| 100 | 100.0           | 110.5            | ± 0.7                    | 330                       | 2.85              |
| 110 | 110.0           | 120.5            | ± 0.7                    | 360                       | 3.11              |
| 120 | 120.0           | 131.5            | ± 0.7                    | 400                       | 3.40              |
| 125 | 125.0           | 136.5            | ± 0.7                    | 400                       | 3.45              |

When ordering, please specify: type of hose, nominal diameter (DN), length, choice of seal: cotton, rubber, ceramic or glass-fibre seals

(HYDRA)

(HYDRA)

#### HYDRA protective hose, type SV

Rectangular protective hoses



#### Application

Protective hose for energy guide chains, hydraulic lines and as conveying hose

#### Characteristics

- Very flexible
- Tension-proof
- Resistant to transversal pressure

#### Design

- Wound metal hose
- Clamped profile
- Rectangular cross-section

#### Materials

Galvanised, zinc-plated steel (1.0333)

#### Versions

- Without gasket O
- With rubber joint G, on request
- With cotton packing B, on request

#### **Operating temperature**

- With rubber joint: 60 °C
- With cotton packing: 120 °C
- Without seal: 400 °C

#### Production lengths

Up to max. 25 m

#### Supplied as follows

Bundled in rings

#### Types

- Rectangular protective hose, zinc-plated steel without seal, type SV-S-O
- Rectangular protective hose, zinc-plated steel with rubber joint, type SV-S-G
- Rectangular protective hose, zinc-plated steel with cotton packing, type SV-S-B

#### HYDRA protective hoses, type SV-S-O

Rectangular protective hoses, zinc-plated steel without sealing

| No-<br>minal<br>size | Outsid                                      | le diameter              | Inside diameter               |                          | Minimum bending<br>radius |                          | Weight<br>approx. |
|----------------------|---------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------|--------------------------|-------------------|
| NS                   | <b>D</b> <sub>1</sub> <b>D</b> <sub>2</sub> | Permissible<br>deviation | d <sub>1</sub> d <sub>2</sub> | Permissible<br>deviation | r <sub>min</sub>          | Permissible<br>deviation | -                 |
| mm                   | mm                                          | mm                       | mm                            | mm                       | mm                        | -                        | kg/m              |
| 15                   | 30 x 50                                     | ± 1                      | 27.0 x 47.0                   | ± 1                      | 70                        | -10                      | 0.64              |
| 25                   | 50 x 50                                     | ± 1                      | 46.8 x 46.8                   | ± 1                      | 120                       | -10                      | 0.82              |
| 38                   | 45 x 85                                     | ± 1                      | 40.8 x 81.0                   | ± 1                      | 100                       | -10                      | 1.28              |
| 42                   | 65 x 65                                     | ± 1                      | 60.8 x 60.8                   | ± 1                      | 130                       | -10                      | 1.26              |
| 51                   | 60 x 85                                     | ± 1                      | 55.8 x 81.0                   | ± 1                      | 130                       | -10                      | 1.44              |
| 69                   | 60 x 115                                    | ± 1                      | 54.8 x 110.2                  | ± 1                      | 130                       | -20                      | 2.37              |
| 92                   | 80 x 115                                    | ± 1                      | 74.6 x 110.0                  | ± 1                      | 170                       | -20                      | 2.66              |
| 126                  | 90 x 140                                    | ± 1                      | 84.6 x 135.0                  | ± 1                      | 180                       | -20                      | 3.15              |
| 140                  | 80 x 175                                    | ± 1                      | 74.4 x 169.8                  | ± 1                      | 170                       | -20                      | 3.54              |
| 154                  | 110 x 140                                   | ± 1                      | 104.2 x 135.2                 | ± 1                      | 250                       | -20                      | 3.60              |
| 193                  | 110 x 175                                   | ± 1                      | 104.2 x 1696                  | ± 1                      | 250                       | -20                      | 3.97              |
| 242                  | 110 x 220                                   | ± 1.5                    | 104.4 x 214.4                 | ± 1.5                    | 250                       | -20                      | 4.60              |

When ordering, please specify: type of hose, nominal size (NG), length



#### HYDRA protective hoses, type SA

according to DIN EN ISO 15465





#### Application

- Protective hose according to DIN EN ISO15465 (Type DOU)
- Protective hose with high mechanical strength for light conductors, measuring lines and electric cables
- Protective hose for pressure hoses

#### Characteristics

- Resistant to torsion
- Flexible
- Tension-proof
- With high crushing strength

#### Design

- Wound metal hose
- Interlocked profile (Agraff profile)
- Round cross-section

#### Materials

- Galvanised, zinc-plated steel (1.0330) up to DN 18
- Hot-dip galvanised steel (1.0226) from DN 20
- Stainless steel (1.4301)

#### Versions

Stainless steel with PVC or silicone coating

#### **Operating temperature**

- Galvanised steel: 400 °C
- Stainless steel: 600 °C

#### **Production lengths**

Measured in expanded position

- Up to DN 9 max. 100 m, From DN 10 max. 60 m
- From DN15 max. 50 m, From DN 26 max. 40 m,
- From DN 45 max. 30 m, From DN 65 max. 25 m

#### Supplied as follows

On reels or as a bundle

#### Types

- Protective hose, zinc-plated steel type SA-S-O
- Protective hose, stainless steel type SA-E-O



#### HYDRA protective hoses, type SA-S-O

according to DIN EN ISO 15465, zinc-plated steel without seal

| DN | Inside diameter | Outside diameter | Permi<br>devia |       | Minimum ben-<br>ding radius | Weight<br>approx. |
|----|-----------------|------------------|----------------|-------|-----------------------------|-------------------|
| -  | d               | D                | d              | D     | r <sub>min</sub>            | -                 |
| -  | mm              | mm               | mm             | mm    | mm                          | kg/m              |
| 4  | 4.0             | 6.1              | ± 0.2          | ± 0.2 | 35                          | 0.155             |
| 5  | 5.0             | 7.1              | ± 0.2          | ± 0.2 | 35                          | 0.16              |
| 6  | 6.0             | 8.2              | ± 0.2          | ± 0.4 | 35                          | 0.085             |
| 7  | 7.0             | 9.2              | ± 0.2          | ± 0.4 | 40                          | 0.095             |
| 8  | 8.0             | 10.2             | ± 0.2          | ± 0.4 | 45                          | 0.11              |
| 9  | 9.0             | 11.2             | ± 0.2          | ± 0.4 | 50                          | 0.12              |
| 10 | 10.0            | 12.2             | ± 0.2          | ± 0.4 | 55                          | 0.13              |
| 11 | 11.0            | 13.2             | ± 0.2          | ± 0.4 | 60                          | 0.145             |
| 12 | 12.0            | 14.2             | ± 0.2          | ± 0.4 | 65                          | 0.155             |
| 13 | 13.0            | 15.2             | ± 0.2          | ± 0.4 | 70                          | 0.17              |
| 14 | 14.0            | 16.8             | ± 0.3          | ± 0.4 | 80                          | 0.225             |
| 15 | 14.5            | 17.3             | ± 0.3          | ± 0.4 | 83                          | 0.25              |
| 15 | 15.0            | 17.8             | ± 0.3          | ± 0.4 | 85                          | 0.24              |
| 16 | 16.0            | 18.8             | ± 0.3          | ± 0.4 | 90                          | 0.25              |
| 18 | 18.0            | 20.8             | ± 0.3          | ± 0.4 | 95                          | 0.28              |
| 19 | 19.0            | 21.8             | ± 0.3          | ± 0.4 | 98                          | 0.32              |
| 20 | 20.0            | 22.8             | ± 0.3          | ± 0.4 | 100                         | 0.31              |
| 23 | 23.0            | 25.8             | ± 0.3          | ± 0.4 | 125                         | 0.355             |
| 25 | 25.0            | 28.3             | ± 0.3          | ± 0.5 | 135                         | 0.048             |
| 28 | 28.0            | 31.3             | ± 0.3          | ± 0.5 | 150                         | 0.54              |
| 30 | 30.0            | 33.3             | ± 0.3          | ± 0.5 | 155                         | 0.575             |
| 32 | 32.0            | 35.3             | ± 0.3          | ± 0.5 | 170                         | 0.615             |
| 35 | 35.0            | 38.3             | ± 0.3          | ± 0.5 | 185                         | 0.67              |
| 36 | 36.0            | 39.3             | ± 0.3          | ± 0.5 | 185                         | 0.685             |

| DN  | Inside diameter | Outside diameter | Permissible<br>deviation |       | Minimum<br>bending radius | Weight<br>approx. |
|-----|-----------------|------------------|--------------------------|-------|---------------------------|-------------------|
| -   | d               | D                | d                        | D     | r <sub>min</sub>          | -                 |
| -   | mm              | mm               | mm                       | mm    | mm                        | kg/m              |
| 40  | 40.0            | 44.4             | ± 0.4                    | ± 0.6 | 210                       | 0.935             |
| 45  | 45.0            | 49.4             | ± 0.4                    | ± 0.6 | 240                       | 1.10              |
| 50  | 50.0            | 54.4             | ± 0.4                    | ± 0.6 | 260                       | 1.16              |
| 54  | 54.0            | 58.4             | ± 0.4                    | ± 0.6 | 270                       | 1.30              |
| 55  | 55.0            | 59.4             | ± 0.4                    | ± 0.6 | 270                       | 1.33              |
| 60  | 60.0            | 66.0             | ± 0.4                    | ± 0.6 | 310                       | 1.87              |
| 65  | 65.0            | 71.0             | ± 0.6                    | ± 0.6 | 315                       | 2.020             |
| 70  | 70.0            | 76.0             | ± 0.6                    | ± 0.6 | 325                       | 2.18              |
| 75  | 75.0            | 81.0             | ± 0.6                    | ± 0.6 | 345                       | 2.34              |
| 80  | 80.0            | 86.0             | ± 0.6                    | ± 0.6 | 370                       | 2.50              |
| 85  | 85.0            | 91.0             | ± 0.6                    | ± 0.6 | 385                       | 2.65              |
| 90  | 90.0            | 98.0             | ± 0.8                    | ± 0.6 | 400                       | 2.80              |
| 100 | 100.0           | 108.0            | ± 0.8                    | ± 0.6 | 440                       | 3.12              |

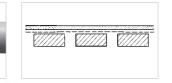
Please provide the following information when ordering: type of hose, nominal diameter (DN), length

(HYDRA®)

#### HYDRA protective hoses, type SA-E-O

according to DIN EN ISO 15465, stainless steel without gasket

| DN | Inside diameter | Outside diameter | Permi<br>devia | ssible<br>ation | Minimum ben-<br>ding radius | Weight<br>approx. |
|----|-----------------|------------------|----------------|-----------------|-----------------------------|-------------------|
| -  | d               | D                | d              | D               | r <sub>min</sub>            | -                 |
| -  | mm              | mm               | mm             | mm              | mm                          | kg/m              |
| 4  | 4.0             | 6.1              | ± 0.2          | ± 0.2           | 35                          | 0.155             |
| 5  | 5.0             | 7.1              | ± 0.2          | ± 0.2           | 35                          | 0.16              |
| 6  | 6.0             | 8.2              | ± 0.2          | ± 0.4           | 35                          | 0.085             |
| 7  | 7.0             | 9.2              | ± 0.2          | ± 0.4           | 40                          | 0.10              |
| 8  | 8.0             | 10.2             | ± 0.2          | ± 0.4           | 45                          | 0.11              |
| 9  | 9.0             | 11.2             | ± 0.2          | ± 0.4           | 50                          | 0.125             |
| 10 | 9.5             | 11.7             | ± 0.2          | ± 0.4           | 53                          | 0.13              |
| 10 | 10.0            | 12.2             | ± 0.2          | ± 0.4           | 55                          | 0.135             |
| 11 | 11.0            | 13.2             | ± 0.2          | ± 0.4           | 60                          | 0.145             |
| 12 | 12.0            | 14.2             | ± 0.2          | ± 0.4           | 65                          | 0.16              |
| 13 | 13.0            | 15.2             | ± 0.2          | ± 0.4           | 70                          | 0.17              |
| 14 | 14.0            | 16.8             | ± 0.3          | ± 0.4           | 80                          | 0.225             |
| 15 | 15.0            | 17.8             | ± 0.3          | ± 0.4           | 85                          | 0.24              |
| 16 | 16.0            | 18.8             | ± 0.3          | ± 0.4           | 90                          | 0.255             |
| 17 | 17.0            | 19.8             | ± 0.3          | ± 0.4           | 95                          | 0.285             |
| 18 | 18.0            | 20.8             | ± 0.3          | ± 0.4           | 95                          | 0.29              |
| 19 | 19.0            | 21.8             | ± 0.3          | ± 0.4           | 98                          | 0.315             |
| 20 | 20.0            | 22.8             | ± 0.3          | ± 0.4           | 100                         | 0.325             |
| 22 | 22.0            | 24.8             | ± 0.3          | ± 0.4           | 117                         | 0.36              |
| 23 | 23.0            | 25.8             | ± 0.3          | ± 0.4           | 125                         | 0.37              |
| 25 | 25.0            | 28.3             | ± 0.3          | ± 0.5           | 135                         | 0.49              |
| 27 | 27.0            | 30.3             | ± 0.3          | ± 0.5           | 145                         | 0.525             |
| 28 | 28.0            | 31.3             | ± 0.3          | ± 0.5           | 150                         | 0.54              |
| 30 | 30.0            | 33.3             | ± 0.3          | ± 0.5           | 155                         | 0.575             |


| DN  | Inside diameter | Outside diameter | Permissible deviation |       | Minimum ben-<br>ding radius | Weight<br>approx. |
|-----|-----------------|------------------|-----------------------|-------|-----------------------------|-------------------|
| -   | d               | D                | d                     | D     | r <sub>min</sub>            | -                 |
| -   | mm              | mm               | mm                    | mm    | mm                          | kg/m              |
| 32  | 32.0            | 35.3             | ± 0.3                 | ± 0.5 | 170                         | 0.615             |
| 33  | 33.0            | 36.3             | ± 0.3                 | ± 0.5 | 175                         | 0.635             |
| 35  | 35.0            | 38.3             | ± 0.3                 | ± 0.5 | 185                         | 0.675             |
| 40  | 40.0            | 44.4             | ± 0.4                 | ± 0.6 | 210                         | 0.95              |
| 45  | 45.0            | 49.4             | ± 0.5                 | ± 0.6 | 240                         | 1.10              |
| 50  | 50.0            | 54.4             | ± 0.4                 | ± 0.6 | 260                         | 1.17              |
| 54  | 54.0            | 58.4             | ± 0.4                 | ± 0.6 | 270                         | 1.31              |
| 55  | 55.0            | 59.4             | ± 0.4                 | ± 0.6 | 270                         | 1.33              |
| 58  | 58.0            | 62.4             | ± 0.4                 | ± 0.6 | 272                         | 1.83              |
| 60  | 60.0            | 66.0             | ± 0.6                 | ± 0.6 | 200                         | 1.87              |
| 65  | 65.0            | 71.0             | ± 0.6                 | ± 0.6 | 210                         | 2.025             |
| 70  | 70.0            | 76.0             | ± 0.6                 | ± 0.6 | 240                         | 2.18              |
| 75  | 75.0            | 81.0             | ± 0.6                 | ± 0.6 | 260                         | 2.34              |
| 80  | 80.0            | 86.0             | ± 0.6                 | ± 0.6 | 270                         | 2.50              |
| 85  | 85.0            | 91.0             | ± 0.6                 | ± 0.6 | 290                         | 2.65              |
| 90  | 90.0            | 98.0             | ± 0.6                 | ± 0.8 | 300                         | 2.80              |
| 100 | 100.0           | 108.0            | ± 0.6                 | ± 0.8 | 340                         | 3.12              |

\* Version according to VDE. Please provide the following information when ordering: type of hose, nominal diameter (DN), length



#### HYDRA protective hoses, type SZ

Protective hoses for fibre optics



#### Application

Protective hose for light conductors in medical and industrial applications, e.g. endoscopy, measurement and control technology

#### Characteristics

- Highly flexible, with bending radius limitation
- High tensile strength and very slight elongation
- Resistant to torsion and transversal pressure
- Autoclavable, light- and liquid-fast
- Smooth interior surface completely free of burrs

#### Design

- Flat wire spiral with fibre glass braiding and grey silicone coating (medical version)
- Round cross-section

#### Materials

- Stainless steel (1.4301)
- Aluminium (3.3555)

#### **Operating temperature**

-60 °C to +180 °C for steam pressure sterilisation up to +134 °C

#### **Production lengths**

Measured in expanded position d: 1.0 - 3.5 approx. 90% > 50 m, rest > 15 m 4 - 8 approx. 80% > 40 m, rest > 10 m 10 - 13 approx. 70% > 20 m, rest > 7 m

#### Supplied as follows

On reels or as a bundle

#### Types

- Special protective hose for light conductors, stainless steel, type SZ 111S
- Special protective hose for light conductors, aluminium, type SZ 111S
- Special protective hose for light conductors, stainless steel, type SZ 211S, lightweight version



#### HYDRA protective hoses, type SZ 111S

Protective hoses for fibre optics

| DN | Inside d | liameter        | Outside | diameter        | Minimum           | Weight  |
|----|----------|-----------------|---------|-----------------|-------------------|---------|
|    |          | Perm. deviation |         | Perm. deviation | bending<br>radius | approx. |
| -  | d        | d               | D       | D               | r <sub>min</sub>  | -       |
| -  | mm       | mm              | mm      | mm              | mm                | kg/m    |
| 1  | 1.0      | - 0.15          | 2.9     | + 0.2/- 0.1     | 5                 | 0.015   |
| 2  | 1.5      | - 0.15          | 3.5     | + 0.2/- 0.1     | 6                 | 0.019   |
| 3  | 2.5      | - 0.15          | 4.4     | + 0.2/- 0.1     | 14                | 0.030   |
| 3  | 3.0      | - 0.15          | 5.3     | + 0.2/- 0.1     | 20                | 0.045   |
| 4  | 3.5      | - 0.15          | 5.8     | + 0.2/- 0.1     | 20                | 0.050   |
| 4  | 4.0      | - 0.15          | 6.5     | ± 0.2           | 25                | 0.065   |
| 5  | 4.5      | - 0.15          | 7.0     | ± 0.3           | 25                | 0.070   |
| 5  | 5.0      | - 0.15          | 7.5     | ± 0.3           | 25                | 0.080   |
| 6  | 6.0      | - 0.15          | 8.9     | ± 0.3           | 35                | 0.11    |
| 7  | 6.5      | - 0.15          | 9.6     | ± 0.3           | 35                | 0.13    |
| 7  | 7.0      | - 0.15          | 10.1    | ± 0.3           | 45                | 0.14    |
| 8  | 8.0      | ± 0.1           | 11.6    | ± 0.3           | 45                | 0.19    |
| 10 | 10.0     | ± 0.1           | 13.6    | ± 0.4           | 65                | 0.24    |
| 11 | 11.4     | ± 0.1           | 15.6    | ± 0.4           | 75                | 0.325   |
| 12 | 12.0     | ± 0.1           | 16.2    | ± 0.4           | 75                | 0.35    |

6.6 HYDRA® Stripwound hoses - fittings, hose assemblies

#### HYDRA protective hoses, type SZ 211S

Protective hoses DBP for fibre optics

| DN | Inside d | liameter<br>Perm. deviation | Outside diameter<br>Perm. deviation |                 | Minimum<br>bending | Weight  |
|----|----------|-----------------------------|-------------------------------------|-----------------|--------------------|---------|
|    |          | Perm. deviation             |                                     | Perm. deviation | radius             | approx. |
| -  | d        | d                           | D                                   | D               | r <sub>min</sub>   | -       |
| -  | mm       | mm                          | mm                                  | mm              | mm                 | kg/m    |
| 3  | 2.7      | 0.15                        | 4.4                                 | + 0.2/- 0.1     | 7                  | 0.020   |
| 3  | 3.3      | 0.15                        | 5.3                                 | + 0.2/- 0.1     | 9                  | 0.030   |
| 4  | 3.8      | 0.15                        | 5.8                                 | ± 0.2           | 11                 | 0.030   |
| 5  | 4.5      | 0.15                        | 6.5                                 | ± 0.3           | 13                 | 0.040   |
| 5  | 5.0      | 0.15                        | 7.0                                 | ± 0.3           | 14                 | 0.040   |
| 6  | 5.5      | 0.15                        | 7.5                                 | ± 0.3           | 16                 | 0.045   |
| 7  | 6.5      | 0.15                        | 8.9                                 | ± 0.3           | 22                 | 0.065   |
| 7  | 7.2      | 0.2                         | 9.6                                 | ± 0.3           | 23                 | 0.070   |
| 8  | 7.7      | 0.2                         | 10.1                                | ± 0.3           | 25                 | 0.075   |
| 9  | 9.0      | 0.2                         | 11.6                                | ± 0.3           | 29                 | 0.085   |
| 11 | 10.6     | 0.2                         | 13.6                                | ± 0.4           | 42                 | 0.16    |
| 12 | 12.4     | 0.2                         | 15.6                                | ± 0.4           | 55                 | 0.19    |
| 13 | 13.0     | 0.2                         | 16.2                                | ± 0.4           | 59                 | 0.195   |

When ordering, please specify: type of hose, material, nominal diameter (DN), length

#### Special design manufactured from aluminium

| DN | Inside d | iameter<br>Perm. deviation | Outside diameter<br>Perm. deviat |             | Minimum<br>bending<br>radius | Weight<br>approx. |
|----|----------|----------------------------|----------------------------------|-------------|------------------------------|-------------------|
| -  | d        | d                          | D                                | D           | r <sub>min</sub>             | -                 |
| -  | mm       | mm                         | mm                               | mm          | mm                           | kg/m              |
| 1  | 2.5      | - 0.15                     | 4.6                              | + 0.2/- 0.1 | 15                           | 0.018             |
| 2  | 4.0      | ± 0.15                     | 6.5                              | ± 0.3       | 25                           | 0.028             |
| 3  | 4.6      | ± 0.15                     | 7.1                              | ± 0.3       | 25                           | 0.036             |
| 12 | 6.0      | ± 0.15                     | 8.9                              | ± 0.3       | 35                           | 0.058             |

When ordering, please specify: type of hose, material, nominal (DN), length

(HYDRA®)

#### Special designs, type SA-E-S

Protective hoses for fibre optics



# JTT

#### Applications

Protective hose for light conductors in medical and industrial applications, e.g. endoscopy, sensor technology, laser technology, optoelectronics, measurement and control technology

#### Characteristics

Resistant to torsion, particularly resistant to tension, flexible, light and liquid-fast with a high crushing strength

#### Design

- Stripwound metal hose
- Interlocked profile
- Round cross-section and grey silicon coating

#### Materials

Stainless steel (1.4301) with silicon coating

#### Operating temperature

-60 °C to +180 °C

#### **Production lengths**

Measured in expanded position

- Up to DN 9 max. 100 m, from DN 10 max. 60 m
- From DN 15 max. 50 m, from DN 26 max. 40 m
- From DN 45 max. 30 m, from DN 65 max. 25 m

#### Supplied as follows

On reels or as a bundle

| DN | Inside diameter |                 | Outside | diameter        | Minimum          | Weight  |
|----|-----------------|-----------------|---------|-----------------|------------------|---------|
|    |                 | perm. deviation |         | perm. deviation | bending radius   | approx. |
| -  | d               | d               | D       | D               | r <sub>min</sub> | -       |
| -  | mm              | mm              | mm      | mm              | mm               | kg/m    |
| 5  | 4.8             | ± 0.2           | 8.5     | ± 0.4           | 35               | 0.112   |
| 6  | 5.8             | ± 0.2           | 9.5     | ± 0.4           | 45               | 0.144   |
| 6  | 6.0             | ± 0.2           | 9.6     | ± 0.4           | 43               | 0.115   |
| 7  | 7.0             | ± 0.2           | 10.6    | ± 0.4           | 48               | 0.131   |
| 8  | 8.0             | ± 0.2           | 11.6    | ± 0.4           | 55               | 0.146   |
| 9  | 9.0             | ± 0.2           | 12.6    | ± 0.4           | 60               | 0.162   |
| 10 | 10.0            | ± 0.2           | 13.6    | ± 0.4           | 66               | 0.176   |
| 11 | 11.0            | ± 0.2           | 14.6    | ± 0.4           | 73               | 0.192   |
| 12 | 12.0            | ± 0.2           | 15.6    | ± 0.4           | 78               | 0.208   |

#### 6.6 HYDRA® Stripwound hoses - fittings, hose assemblies

#### Special designs type SA-E-O

Protective hoses for telephones, measurement devices, alarm systems





#### Protective hoses type SA-E-O

are manufactured to specific customer requirements. Some of these special designs are listed below.

#### **Tensile strength**

Specific customer requirements are crucial here too. Values > 2000 N are achievable.

| DN | Inside d | liameter<br>Perm. deviation | Outside | diameter<br>Perm. deviation | Minimum<br>bending<br>radius | Weight<br>Approx. |
|----|----------|-----------------------------|---------|-----------------------------|------------------------------|-------------------|
| -  | d        | d                           | D       | D                           | r <sub>min</sub>             | -                 |
| -  | mm       | mm                          | mm      | mm                          | mm                           | kg/m              |
| 5  | 5.1      | ± 0.2                       | 7.8     | ± 0.1                       | 30                           | 0.108             |
| 6  | 5.8      | ± 0.2                       | 8.4     | + 0.1/- 0.2                 | 35                           | 0.115             |

(HYDRA®)

(HYDRA)

#### Connection fittings type KLE 1, ERD 1, SUM

Compression coupling, earthing connection and counter nut for SG (VDE)/SG

#### **Connection fitting KLE 1**

Materials: Zinc-plated brass, connection thread DIN 40430, without grounding insert ERD 1, without counter nut SUM. Compression couplings can be used for the universal connection of protective hoses SG (VDE)\* and SG.



| Thread<br>PG | Thread<br>metric | Suital<br>SG-S-O (VDE |    | Width across<br>flats | Clamping<br>Outside dian |      |
|--------------|------------------|-----------------------|----|-----------------------|--------------------------|------|
| -            | -                | DN                    | DN | S                     | min.                     | max. |
| DIN 40430    | mm               | -                     | -  | mm                    | mm                       | mm   |
| 7            | 12 x 1.5         | 8                     | 7  | 19                    | 10.0                     | 12.5 |
| 9            | 16 x 1.5         | 11                    | 10 | 22                    | 12.0                     | 15.5 |
| 11           | 20 x 1.5         | 14                    | 13 | 27                    | 15.0                     | 18.5 |
| 13.5         | 20 x 1.5         | 16                    | 15 | 27                    | 17.0                     | 20.5 |
| 16           | 25 x 1.5         | 18                    | 17 | 30                    | 19.5                     | 22.0 |
| 21           | 32 x 1.5         | 23                    | 22 | 41                    | 25.0                     | 30.0 |
| 29           | 40 x 1.5         | 31                    | 29 | 46                    | 32.0                     | 37.0 |
| 36           | 50 x 1.5         | 40                    | 38 | 60                    | 42.0                     | 47.5 |
| 42           | 56 x 1.5         | 47                    | 45 | 66                    | 49.0                     | 54.0 |
| 48           | 63 x 1.5         | 51                    | 49 | 80                    | 52.0                     | 61.0 |

\* VDE: When installed correctly with grounding insert, the screw connection fulfils the requirements of the VDE regulations. When ordering, please specify: Type, nominal size (PG)



| Nominal size<br>PG | Suitable for<br>SG-S-O (VDE) SG-S-P (VDE) |    |  |
|--------------------|-------------------------------------------|----|--|
| -                  | DN                                        | DN |  |
| DIN 40430          | -                                         | -  |  |
| 7                  | 8                                         | 7  |  |
| 9                  | 11                                        | 10 |  |
| 11                 | 14                                        | 13 |  |
| 13.5               | 16                                        | 15 |  |
| 16                 | 18                                        | 17 |  |
| 21                 | 23                                        | 22 |  |
| 29                 | 31                                        | 29 |  |
| 36                 | 40                                        | 38 |  |
| 42                 | 47                                        | 45 |  |
| 48                 | 51                                        | 49 |  |



## Grounding insert ERD 1 bright brass and counter nut SUM

nickel-plated brass, compatible with compression coupling KLE 1



#### **Connection fittings**

Kroneck screw couplings GBGM

#### Materials

Nickel-plated brass

#### Kroneck screw couplings

- Ensure a metallic connection according to VDE 0113 providing they are used in accordance with these instructions.
- Are very space-saving and can therefore be mounted on terminal boxes with small hole separation.
- Can easily be released and used again several times.



| Thread    | 1400 series                        | 1600 series                    |
|-----------|------------------------------------|--------------------------------|
| PG        | Suitable for metal hoses SG and SD | Suitable for metal hose SG-S-P |
| -         | d <sub>1</sub> d <sub>2</sub>      | d <sub>1</sub> d <sub>2</sub>  |
| DIN 40430 | mm mm                              | mm mm                          |
| 7         | 8.0 x 10.2                         | 7.0 x 10.2                     |
| 9         | 11.0 x 14.0                        | 10.0 x 14.0                    |
| 11        | 14.0 x 17.4                        | 13.0 x 17.4                    |
| 13.5      | 16.0 x 19.2                        | 15.0 x 19.2                    |
| 16        | 18.0 x 21.3                        | 17.0 x 21.3                    |
| 21        | 23.0 x 27.0                        | 21.5 x 27.0                    |
| 29        | 31.5 x 35.7                        | 30.0 x 35.7                    |
| 36        | 40.5 x 45.7                        | 38.5 x 45.7                    |
| 42        | 46.5 x 52.5                        | 44.0 x 52.5                    |
| 48        | 50.0 x 56.0                        | 48.0 x 56.0                    |

#### 6.6 HYDRA® Stripwound hoses - fittings, hose assemblies

Extraction, exhaust and conveying hoses Type FA





#### Applications

Exhaust gas hose for mobile and stationary applications and can be used as extraction and conveying hose

#### Characteristics

- High mechanical stability
- Vibration-resistant
- Good flexibility
- Self-supporting bending behaviour
- For high temperatures, as metal-sealed

#### Design

- Stripwound metal hose
- Interlocked profile
- Polygonal cross-section

#### Materials

- Galvanised, zinc-plated steel (1.0330 / 1.0333)
- Stainless steel (1.4301)

#### **Operating temperature**

- Galvanised steel: 400 °C
- Stainless steel: 600 °C

#### **Production lengths**

In Stretched state

- Up to DN 55 max. 20 m
- From DN 60 max. 10 m

#### . .

Supplied as follows Bundled in rings

#### Types

- Exhaust gas hose, zinc-plated steel, type FA 330S
- Exhaust gas hose, stainless steel, type FA 330S



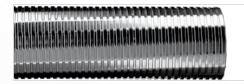


#### Extraction, exhaust and conveying hoses type FA 330S

Zinc-plated steel or stainless steel, metallic seal

| DN  | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum ben-<br>ding radius | Weight<br>approx. |
|-----|-----------------|------------------|--------------------------|-----------------------------|-------------------|
| -   | d               | D                | d, D                     | r <sub>min</sub>            | -                 |
| -   | mm              | mm               | -                        | mm                          | kg/m              |
| 20  | 20.0            | 22.5             | ± 0.4                    | 135                         | 0.318             |
| 23  | 23.0            | 25.5             | ± 0.4                    | 155                         | 0.363             |
| 25  | 25.0            | 27.5             | ± 0.4                    | 165                         | 0.394             |
| 28  | 28.0            | 30.5             | ± 0.4                    | 185                         | 0.439             |
| 30  | 30.0            | 33.1             | ± 0.4                    | 180                         | 0.582             |
| 32  | 32.0            | 35.1             | ± 0.4                    | 195                         | 0.619             |
| 35  | 35.0            | 38.1             | ± 0.4                    | 210                         | 0.674             |
| 38  | 38.0            | 41.0             | ± 0.4                    | 230                         | 0.728             |
| 40  | 40.0            | 43.1             | ± 0.5                    | 240                         | 0.766             |
| 42  | 42.0            | 45.1             | ± 0.5                    | 250                         | 0.799             |
| 45  | 45.0            | 48.1             | ± 0.5                    | 270                         | 0.859             |
| 50  | 50.0            | 53.1             | ± 0.5                    | 300                         | 0.963             |
| 55  | 55.0            | 58.1             | ± 0.5                    | 325                         | 1.04              |
| 60  | 60.0            | 64.0             | ± 0.6                    | 335                         | 1.55              |
| 65  | 65.0            | 69.0             | ± 0.6                    | 360                         | 1.67              |
| 70  | 70.0            | 74.0             | ± 0.6                    | 390                         | 1.80              |
| 75  | 75.0            | 79.0             | ± 0.6                    | 415                         | 1.92              |
| 80  | 80.0            | 84.0             | ± 0.7                    | 440                         | 2.04              |
| 84  | 84.0            | 88.0             | ± 0.7                    | 460                         | 2.10              |
| 90  | 90.0            | 94.0             | ± 0.7                    | 495                         | 2.30              |
| 100 | 100.0           | 104.0            | ± 0.8                    | 550                         | 2.55              |
| 110 | 110.0           | 115.0            | ± 0.8                    | 605                         | 2.81              |
| 120 | 120.0           | 125.0            | ± 0.8                    | 660                         | 3.06              |
| 125 | 125.0           | 130.0            | ± 0.8                    | 685                         | 3.18              |

#### Extraction, exhaust and conveying hoses type FA 330S


Zinc-plated steel or stainless steel, metallic seal

| DN  | Inside diameter | Outside diameter | Permissible<br>deviation | Minimum ben-<br>ding radius | Weight<br>approx. |
|-----|-----------------|------------------|--------------------------|-----------------------------|-------------------|
| -   | d               | D                | d, D                     | r <sub>min</sub>            | -                 |
| -   | mm              | mm               | -                        | mm                          | kg/m              |
| 130 | 130.0           | 137.0            | ± 1.0                    | 600                         | 4.05              |
| 140 | 140.0           | 147.0            | ± 1.0                    | 645                         | 4.34              |
| 150 | 150.0           | 157.0            | ± 1.0                    | 690                         | 4.65              |
| 160 | 160.0           | 167.0            | ± 1.0                    | 735                         | 4.96              |
| 175 | 175.0           | 182.0            | ± 1.0                    | 800                         | 5.42              |
| 180 | 180.0           | 187.0            | ± 1.0                    | 825                         | 5.56              |
| 185 | 185.0           | 192.0            | ± 1.0                    | 995                         | 5.70              |
| 200 | 200.0           | 208.0            | ± 1.5                    | 1085                        | 7.74              |
| 225 | 225.0           | 233.0            | ± 1.5                    | 1215                        | 8.68              |
| 250 | 250.0           | 258.0            | ± 1.5                    | 1350                        | 9.60              |
| 275 | 275.0           | 283.0            | ± 1.5                    | 1480                        | 10.59             |
| 300 | 300.0           | 308.0            | ± 2.0                    | 1615                        | 11.49             |

When ordering, please specify: type of hose, material, nominal diameter (DN), length



## Extraction, exhaust and conveying hoses Type FG



#### Application

Universal ventilation, extraction and conveying hoses, e.g. for smoke, shavings and exhaust gas

#### Characteristics

- Flexible
- Resistant to torsion

#### Design

- Stripwound metal hose
- Interlocked profile
- Polygonal cross-section

#### Materials

- Steel, hot-dip galvanised (1.0226)
- Stainless steel (1.4301)

#### Versions

- Without gasket O
- With rubber joint G
- With cotton packing B
   With ceramic seal K
- vvitn ceramic seal K

#### **Operating temperature**

- Zinc-plated with rubber joint: 60 °C
- Zinc-plated with cotton packing: 120 °C
- Zinc-plated with ceramic seal: 400 °C
- Stainless steel with ceramic seal: 600 °C

#### **Production lengths**

In stretched state

- To DN 180 max. 25 m
- From DN 200 max. 20 m
- From DN 350 max. 8 m

#### Supplied as follows

Bundled in rings

#### Types

- Extraction hose, zinc-plated steel, without seal type FG-S-O
- Extraction hose, zinc-plated steel, with cotton packing type FG-S-B
- Extraction hose, zinc-plated steel, with rubber joint type FG-S-G
- Extraction hose, zinc-plated steel, with ceramic seal type FG-S-K
- Extraction hose, stainless steel, with ceramic seal type FG-E-K





## Extraction, exhaust and conveying hoses type FG-S-O, FG-S-G, FG-S-B, FG-S-K, FG-E-K

Zinc-plated steel or stainless steel with choice of seals

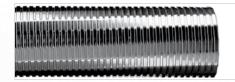
| DN  | Inside diameter | Outside diameter |       | ssible<br>ation | Minimum ben-<br>ding radius | Weight<br>approx. |
|-----|-----------------|------------------|-------|-----------------|-----------------------------|-------------------|
| -   | d               | D                | d     | D               | r <sub>min</sub>            | -                 |
| -   | mm              | mm               | mm    | mm              | mm                          | kg/m              |
| 20  | 20.0            | 24.0             | ± 0.3 | ± 0.5           | 100                         | 0.35              |
| 25  | 25.0            | 29.0             | ± 0.3 | ± 0.5           | 110                         | 0.43              |
| 30  | 30.0            | 34.0             | ± 0.4 | ± 0.6           | 130                         | 0.51              |
| 32  | 32.0            | 36.0             | ± 0.4 | ± 0.6           | 140                         | 0.545             |
| 35  | 35.0            | 39.0             | ± 0.4 | ± 0.6           | 150                         | 0.59              |
| 38  | 38.0            | 42.0             | ± 0.4 | ± 0.6           | 155                         | 0.645             |
| 40  | 40.0            | 44.5             | ± 0.4 | ± 0.5           | 155                         | 0.675             |
| 45  | 45.0            | 49.5             | ± 0.4 | ± 0.5           | 165                         | 0.755             |
| 50  | 50.0            | 54.5             | ± 0.5 | ± 0.6           | 180                         | 0.835             |
| 60  | 60.0            | 65.5             | ± 0.5 | ± 0.8           | 215                         | 1.01              |
| 63  | 63.0            | 68.5             | ± 0.6 | ± 1.0           | 225                         | 1.06              |
| 65  | 65.0            | 70.5             | ± 0.6 | ± 1.0           | 230                         | 1.09              |
| 70  | 70.0            | 75.5             | ± 0.6 | ± 1.0           | 240                         | 1.17              |
| 71  | 71.0            | 76.5             | ± 0.6 | ± 1.0           | 245                         | 1.19              |
| 75  | 75.0            | 80.5             | ± 0.6 | ± 1.0           | 255                         | 1.25              |
| 80  | 80.0            | 85.5             | ± 0.8 | ± 1.2           | 270                         | 1.34              |
| 81  | 81.0            | 87.0             | ± 0.8 | ± 1.2           | 275                         | 1.36              |
| 85  | 85.0            | 90.5             | ± 0.8 | ± 1.2           | 275                         | 1.42              |
| 90  | 90.0            | 97.0             | ± 0.8 | ± 1.2           | 280                         | 1.85              |
| 100 | 100.0           | 107.0            | ± 0.8 | ± 1.2           | 300                         | 2.04              |
| 102 | 102.0           | 109.0            | ± 0.8 | ± 1.2           | 300                         | 2.08              |
| 110 | 110.0           | 117.0            | ± 0.8 | ± 1.2           | 330                         | 2.24              |
| 112 | 112.0           | 119.0            | ± 0.8 | ± 1.2           | 340                         | 2.28              |

When ordering, please specify: type of hose, material, nominal diameter (DN), length

## Extraction, exhaust and conveying hoses type FG-S-O, FG-S-G, FG-S-B, FG-S-K, FG-E-K

Zinc-plated steel or stainless steel with choice of seals

| DN  | Inside diameter | Outside diameter |       | ssible<br>ation | Minimum ben-<br>ding radius | Weight<br>approx. |
|-----|-----------------|------------------|-------|-----------------|-----------------------------|-------------------|
| -   | d               | D                | d     | D               | r <sub>min</sub>            | -                 |
| -   | mm              | mm               | -     | -               | mm                          | kg/m              |
| 120 | 120.0           | 127.0            | ± 0.8 | ± 1.2           | 380                         | 2.44              |
| 122 | 122.0           | 129.5            | ± 0.8 | ± 1.2           | 390                         | 2.49              |
| 125 | 125.0           | 132.0            | ± 0.8 | ± 1.2           | 400                         | 2.54              |
| 130 | 130.0           | 138.5            | ± 1.0 | ± 1.5           | 410                         | 2.92              |
| 140 | 140.0           | 148.5            | ± 1.0 | ± 1.5           | 430                         | 3.13              |
| 150 | 150.0           | 158.5            | ± 1.0 | ± 1.5           | 460                         | 3.35              |
| 160 | 160.0           | 168.5            | ± 1.0 | ± 1.5           | 490                         | 3.57              |
| 175 | 175.0           | 184.0            | ± 1.0 | ± 1.5           | 530                         | 3.90              |
| 180 | 180.0           | 189.0            | ± 1.0 | ± 1.5           | 540                         | 4.01              |
| 200 | 200.0           | 210.5            | ± 1.5 | ± 2.0           | 560                         | 5.51              |
| 210 | 210.0           | 220.5            | ± 1.5 | ± 2.0           | 585                         | 5.78              |
| 224 | 224.0           | 234.5            | ± 1.5 | ± 2.0           | 625                         | 6.15              |
| 225 | 225.0           | 235.5            | ± 1.5 | ± 2.0           | 630                         | 6.18              |
| 250 | 250.0           | 260.5            | ± 1.5 | ± 2.0           | 700                         | 6.85              |
| 275 | 275.0           | 285.5            | ± 1.5 | ± 2.0           | 770                         | 7.52              |
| 280 | 280.0           | 291.0            | ± 1.5 | ± 2.0           | 800                         | 7.66              |
| 300 | 300.0           | 311.0            | ± 2.0 | ± 2.5           | 850                         | 8.20              |
| 315 | 315.0           | 326.0            | ± 2.0 | ± 2.5           | 890                         | 8.60              |
| 350 | 350.0           | 367.5            | ± 2.0 | ± 2.5           | 1420                        | 14.0              |
| 355 | 355.0           | 327.5            | ± 2.0 | ± 2.5           | 1440                        | 14.2              |
| 400 | 400.0           | 417.5            | ± 3.0 | ± 3.5           | 1620                        | 16.0              |
| 450 | 450.0           | 467.5            | ± 3.0 | ± 3.5           | 1820                        | 17.9              |
| 500 | 500.0           | 517.5            | ± 3.0 | ± 3.5           | 2020                        | 19.9              |


Larger nominal diameters on request

When ordering, please specify: type of hose, material, nominal diameter (DN), length

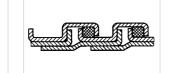


#### Extraction, exhaust and conveying hoses

Type FS with inner abrasion protection



#### Applications


Conveying hose with smooth passageway, e.g. for granules, grain and abrasive materials

#### Characteristics

- Flexible
- Resistant to torsion
- Low wear and tear,
- Good tightness

#### Design

- Stripwound metal hose
- Interlocked profile
- Polygonal cross-section
- With inserted coil as abrasion protection



#### Materials

- Hot-dip galvanised steel (1.0226)
- Stainless steel (1.4301)

#### Versions

- Also available on request in combination of zinc-plated steel with interior coil made of stainless steel
- With rubber joint G
- With cotton packing B
- With ceramic seal K

#### **Operating temperature**

- Zinc-plated with rubber joint: 60 °C
- Zinc-plated with cotton packing: 120 °C
- Zinc-plated with ceramic seal: 400 °C
- Stainless steel with ceramic seal: 600 °C

#### Manufacturing length

In stretched state

- To DN 180 max. 25 m
- From DN 200 max. 20 m
- From DN 350 max. 8 m
- Special lengths on request

#### Supplied as follows

Bundled in rings

#### Types

- Conveying hose, zinc-plated steel, with rubber joint type FS-S-G
- Conveying hose, zinc-plated steel, with cotton packing type FS-S-B
- Conveying hose, zinc-plated steel, with ceramic seal type FS-S-K
- Conveying hose, stainless steel, with ceramic seal type FS-E-K



#### Conveying hoses type FS-S-G, FS-S-B, FS-S-K, FS-E-K

With inner abrasion protection, zinc-plated steel or stainless steel

| Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Bending<br>radius<br>± 20% | Weight ± 10%           |                   |                           |
|--------------------|---------------------|--------------------------|----------------------------|------------------------|-------------------|---------------------------|
| d <sub>1</sub>     | D2                  | -                        | -                          | with cotton<br>packing | with ceramic seal | with latex<br>thread seal |
| mm                 | mm                  | mm                       | mm                         | kg/m                   | kg/m              | kg/m                      |
| 45                 | 53.5                | ± 0.5                    | 200                        | 2.030                  | 2.070             | 2.060                     |
| 50                 | 58.5                | ± 0.5                    | 215                        | 2.255                  | 2.30              | 2.29                      |
| 55                 | 63.5                | ± 0.5                    | 230                        | 2.48                   | 2.53              | 2.52                      |
| 60                 | 68.5                | ± 0.5                    | 240                        | 2.705                  | 2.76              | 2.75                      |
| 65                 | 73.5                | ± 0.7                    | 250                        | 2.92                   | 2.98              | 2.97                      |
| 70                 | 78.5                | ± 0.7                    | 260                        | 3.155                  | 3.22              | 3.205                     |
| 75                 | 83.5                | ± 0.7                    | 275                        | 3.36                   | 3.43              | 3.415                     |
| 80                 | 89.0                | ± 0.7                    | 285                        | 3.595                  | 3.67              | 3.655                     |
| 90                 | 99.5                | ± 1.0                    | 345                        | 4.23                   | 4.28              | 4.39                      |
| 100                | 109.5               | ± 1.0                    | 380                        | 4.70                   | 4.75              | 4.87                      |
| 105                | 114.5               | ± 1.0                    | 400                        | 4.88                   | 4.97              | 4.915                     |
| 110                | 120.0               | ± 1.0                    | 410                        | 5.26                   | 5.32              | 5.45                      |
| 120                | 130.0               | ± 1.0                    | 450                        | 5.64                   | 5.71              | 5.85                      |
| 125                | 135.0               | ± 1.0                    | 470                        | 6.080                  | 6.16              | 6.10                      |
| 130                | 140.0               | ± 1.0                    | 485                        | 6.11                   | 6.18              | 6.35                      |
| 140                | 150.0               | ± 1.0                    | 515                        | 6.58                   | 6.66              | 6.84                      |
| 150                | 162.5               | ± 1.5                    | 545                        | 6.96                   | 7.16              | 7.46                      |
| 160                | 172.5               | ± 1.5                    | 570                        | 7.39                   | 7.60              | 7.91                      |
| 170                | 182.5               | ± 1.5                    | 590                        | 7.84                   | 8.060             | 8.39                      |
| 180                | 192.5               | ± 1.5                    | 620                        | 8.30                   | 8.54              | 8.90                      |
| 190                | 202.5               | ± 1.5                    | 650                        | 8.77                   | 9.020             | 9.40                      |
| 200                | 212.5               | ± 1.5                    | 680                        | 9.23                   | 9.49              | 9.89                      |
| 210                | 223.0               | ± 1.5                    | 715                        | 9.69                   | 9.97              | 10.38                     |

#### Conveying hoses type FS-S-G, FS-S-B, FS-S-K, FS-E-K

With inner abrasion protection, zinc-plated steel or stainless steel

| Inside<br>diameter | Outside<br>diameter | Permissible<br>deviation | Bending<br>radius ±<br>20% | Weight ± 10%           |                      |                           |
|--------------------|---------------------|--------------------------|----------------------------|------------------------|----------------------|---------------------------|
| d <sub>1</sub>     | D2                  | -                        | -                          | with cotton<br>packing | with ceramic<br>seal | with latex<br>thread seal |
| mm                 | mm                  | mm                       | mm                         | kg/m                   | kg/m                 | kg/m                      |
| 225                | 238.0               | ± 1.5                    | 765                        | 10.40                  | 10.70                | 11.15                     |
| 250                | 265.0               | ± 2.0                    | 880                        | 15.47                  | 15.68                | 16.33                     |
| 275                | 290.0               | ± 2.0                    | 1010                       | 17.030                 | 17.26                | 17.98                     |
| 280                | 295.0               | ± 2.0                    | 1040                       | 17.34                  | 17.57                | 18.34                     |
| 300                | 315.0               | ± 2.0                    | 1145                       | 18.59                  | 18.84                | 19.64                     |
| 310                | 325.0               | ± 2.0                    | 1200                       | 19.21                  | 19.46                | 20.27                     |
| 350                | 365.0               | ± 2.0                    | 1410                       | 21.73                  | 22.020               | 22.94                     |
| 380                | 395.0               | ± 2.0                    | 1565                       | 23.58                  | 23.90                | 24.93                     |
| 400                | 415.0               | ± 2.0                    | 1670                       | 24.88                  | 25.21                | 26.26                     |
| 450                | 470.0               | ± 2.0                    | 1930                       | 28.010                 | 28.42                | 29.60                     |

When ordering, please specify: type of hose, material, nominal diameter (DN), length With choice of seal



#### Special designs type SD370L, FG370L

Exhaust gas hoses DIN 14572



#### Applications

Exhaust gas hoses DIN 14572 are designed to convey exhaust gas from portable fire pumps (DIN 14410), from fire service vehicles (DIN 14502 part 1) and from power generating aggregates (DIN 14685).

The hoses prevent operating personnel being hindered or irritated by exhaust gases.

#### Design

- Round or polygonal cross-section
- Wooden handle bars
- Sleeve with pin on one side, sleeve with L-slot on the other

#### Materials

- Zinc-plated steel with glass fibre seal
- Hot-dip galvanised steel (1.0226) from DN 20

#### **Operating temperature**

400 °C

#### Delivery

Ex warehouse, prior sale reserved

#### Order text

Zinc-plated steel DN 47: type SD370L DN 80, 100 and 125: type FG370L

#### Special designs type SD370L, FG370L

Exhaust gas hoses DIN 14572

| DN  | Inside diameter | Outside diameter | Nominal length<br>stretched | Weight       |
|-----|-----------------|------------------|-----------------------------|--------------|
| -   | d1              | d2               | NL                          | -            |
| -   | mm              | mm               | mm                          | kg/m         |
| 47  | 50              | 52               | 1500<br>2500                | 2.50<br>4.00 |
| 80  | 85              | 87               | 2500                        | 6.50         |
| 100 | 102             | 104              | 2500                        | 10.00        |
| 125 | 130             | 132              | 2500                        | 11.50        |

When ordering, please specify: type of hose, nominal diameter (DN), nominal length (NL). Other dimensions on request.



#### Connection fittings type VA20S

For extraction, exhaust and conveying hoses type FA, FG, FS, SD

#### Design

Cylindrical sleeve

#### Mounting technique

Sealed and riveted, brazed and clamped

#### Materials

Stainless steel (1.4301)

#### **Operating temperature**

600 °C

#### Order text

Connection fitting type VA20S

| DN  | d<br>mm | s<br>mm | a<br>mm | l<br>mm | Weight approx.<br>kg |
|-----|---------|---------|---------|---------|----------------------|
| 40  | 40      | 1.0     | 50      | 80      | 0.09                 |
| 50  | 50      | 1.0     | 70      | 100     | 0.13                 |
| 60  | 60      | 1.0     | 70      | 110     | 0.18                 |
| 70  | 70      | 1.0     | 80      | 120     | 0.22                 |
| 80  | 80      | 1.0     | 80      | 120     | 0.25                 |
| 100 | 100     | 1.0     | 100     | 150     | 0.39                 |
| 120 | 120     | 1.0     | 100     | 150     | 0.46                 |
| 125 | 125     | 1.0     | 100     | 150     | 0.48                 |
| 150 | 150     | 1.0     | 100     | 160     | 0.77                 |
| 180 | 180     | 1.0     | 120     | 180     | 1.03                 |
| 200 | 200     | 1.0     | 140     | 210     | 1.33                 |
| 250 | 250     | 1.0     | 180     | 250     | 1.97                 |
| 300 | 300     | 1.0     | 200     | 280     | 3.18                 |
| 315 | 315     | 1.0     | 200     | 280     | 3.33                 |
| 350 | 350     | 1.0     | 200     | 290     | 3.84                 |

When ordering, please specify: connection fitting type, nominal diameter (DN), mounting technique. Other dimensions upon request.

#### **Connection fittings type VB20S**

For extraction, exhaust and conveying hoses type FA, FG, FS, SD

#### Design

Sleeve with 2 slots, cylindrical

#### Mounting technique

Sealed and riveted, brazed or clamped

#### Materials

Stainless steel (1.4301)

#### **Operating temperature**

600 °C

(HYDRA)

#### Order text

Connection fitting type VB20S

| DN  | d<br>mm | s<br>mm | b<br>mm | t<br>mm | a<br>mm | l<br>mm | Weight approx.<br>kg |
|-----|---------|---------|---------|---------|---------|---------|----------------------|
| 40  | 40      | 1.0     | 3       | 30      | 50      | 80      | 0.09                 |
| 50  | 50      | 1.0     | 3       | 40      | 70      | 100     | 0.13                 |
| 60  | 60      | 1.0     | 3       | 40      | 70      | 110     | 0.18                 |
| 70  | 70      | 1.0     | 3       | 40      | 80      | 120     | 0.22                 |
| 80  | 80      | 1.0     | 3       | 40      | 80      | 120     | 0.25                 |
| 100 | 100     | 1.0     | 3       | 50      | 100     | 150     | 0.39                 |
| 120 | 120     | 1.0     | 3       | 50      | 100     | 150     | 0.46                 |
| 125 | 125     | 1.0     | 3       | 50      | 100     | 150     | 0.48                 |
| 150 | 150     | 1.0     | 3       | 55      | 100     | 160     | 0.77                 |
| 180 | 180     | 1.0     | 3       | 60      | 120     | 180     | 1.03                 |
| 200 | 200     | 1.0     | 3       | 70      | 140     | 210     | 1.33                 |
| 250 | 250     | 1.0     | 3       | 80      | 180     | 250     | 1.97                 |
| 300 | 300     | 1.0     | 3       | 80      | 200     | 280     | 3.18                 |
| 315 | 315     | 1.0     | 3       | 80      | 200     | 280     | 3.33                 |
| 350 | 350     | 1.0     | 3       | 80      | 200     | 290     | 3.84                 |

When ordering, please specify: connection fitting type, nominal diameter (DN), mounting technique. Other dimensions upon request.



- 2 perimeter slots

#### **Connection fittings type VF20S**

Sleeve for extraction, exhaust and conveying hoses type FA, FG, FS, SD

#### Design

Sleeve with L-slot, cylindrical

#### Mounting technique

Sealed and riveted, brazed and clamped

#### Materials

Stainless steel (1.4301)

#### **Operating temperature**

600 °C

#### Order text

Connection fitting type VF20S

| DN  | d₂<br>mm | f<br>mm | t<br>mm | w<br>mm | a<br>mm | l<br>mm | Weight approx.<br>kg |
|-----|----------|---------|---------|---------|---------|---------|----------------------|
| 50  | 53       | 9       | 20      | 15      | 50      | 80      | 0.10                 |
| 60  | 63       | 9       | 20      | 15      | 50      | 90      | 0.15                 |
| 70  | 73       | 9       | 20      | 15      | 50      | 90      | 0.17                 |
| 80  | 83       | 9       | 20      | 15      | 50      | 90      | 0.19                 |
| 100 | 103      | 9       | 25      | 25      | 60      | 110     | 0.29                 |
| 120 | 123      | 9       | 25      | 25      | 60      | 110     | 0.34                 |
| 125 | 128      | 9       | 25      | 25      | 60      | 110     | 0.36                 |
| 140 | 144      | 9       | 30      | 25      | 70      | 130     | 0.71                 |
| 150 | 154      | 9       | 30      | 25      | 70      | 130     | 0.75                 |
| 180 | 184      | 9       | 30      | 25      | 70      | 130     | 0.89                 |
| 200 | 204      | 11      | 40      | 30      | 90      | 160     | 1.29                 |
| 250 | 255      | 11      | 40      | 30      | 90      | 160     | 2.11                 |
| 300 | 305      | 11      | 40      | 30      | 100     | 180     | 2.81                 |
| 315 | 320      | 11      | 40      | 30      | 100     | 180     | 2.94                 |
| 350 | 355      | 11      | 45      | 30      | 110     | 200     | 3.64                 |

When ordering, please specify: connection fitting type, nominal diameter (DN), mounting technique. Other dimensions upon request.



DN 120 and above:

2 L-slots on perimeter

#### **Connection fittings type VE20S**

Sleeve for extraction, exhaust and conveying hoses type FA, FG, FS, SD

#### Design

Sleeve with pin, cylindrical

#### Mounting technique

Sealed and riveted, brazed and clamped

#### Materials

Stainless steel (1.4301)

#### **Operating temperature**

600 °C

#### Order text

Connection fitting type VE20S

| DN  | d1<br>mm | d3<br>mm | t<br>mm | a<br>mm | l<br>mm | Weight approx.<br>kg |
|-----|----------|----------|---------|---------|---------|----------------------|
| 50  | 52       | 8        | 20      | 50      | 80      | 0.11                 |
| 60  | 62       | 8        | 20      | 50      | 90      | 0.16                 |
| 70  | 72       | 8        | 20      | 50      | 90      | 0.18                 |
| 80  | 82       | 8        | 20      | 50      | 90      | 0.20                 |
| 100 | 102      | 8        | 25      | 60      | 110     | 0.30                 |
| 120 | 122      | 8        | 25      | 60      | 110     | 0.35                 |
| 125 | 127      | 8        | 25      | 60      | 110     | 0.37                 |
| 140 | 142      | 8        | 30      | 70      | 130     | 0.73                 |
| 150 | 152      | 8        | 30      | 70      | 130     | 0.77                 |
| 180 | 182      | 8        | 30      | 70      | 130     | 0.91                 |
| 200 | 202      | 10       | 40      | 90      | 160     | 1.33                 |
| 250 | 252      | 10       | 40      | 90      | 160     | 2.16                 |
| 300 | 302      | 10       | 40      | 100     | 180     | 2.87                 |
| 315 | 317      | 10       | 40      | 100     | 180     | 3.00                 |
| 350 | 352      | 10       | 45      | 110     | 200     | 3.71                 |

When ordering, please specify: connection fitting type, nominal diameter (DN), mounting technique. Other dimensions upon request.

DN 120 and above

ť

2 L-slots on nerimete

#### Connection fittings type EA

Flanged joint, swivelling for extraction, exhaust and conveying hoses type FA, FG, FS, SD

#### Design

Flanged joint, swivelling

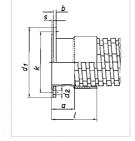
#### Mounting technique

- Sealed and riveted,
- Brazed and clamped

#### **Operating temperature**

- EA20S: 600 °C
- EA80S: 480 °C

#### Materials


- EA20S: stainless steel sleeve, stainless steel flange (1.4301)
  - EA80S: stainless steel sleeve (1.4301), zincplated steel flange

#### Order text

Connection fitting type EA20S or EA80S

| DN   | Outside diameter d1 | b  | k   | Number of<br>holes | d2   | s  | а  | I   | Weight<br>approx. |
|------|---------------------|----|-----|--------------------|------|----|----|-----|-------------------|
|      | mm                  | mm | mm  | -                  | mm   | mm | mm | mm  | kg                |
| 50   | 115                 | 6  | 89  | 4                  | 9.5  | 1  | 40 | 70  | 0.11              |
| 60   | 125                 | 6  | 99  | 4                  | 9.5  | 1  | 40 | 80  | 0.16              |
| 70*  | 13                  | 6  | 110 | 4                  | 9.5  | 1  | 40 | 80  | 0.18              |
| 80*  | 142                 | 6  | 118 | 4                  | 9.5  | 1  | 40 | 80  | 0.20              |
| 100* | 162                 | 6  | 139 | 4                  | 9.5  | 1  | 50 | 100 | 0.30              |
| 120* | 187                 | 6  | 165 | 4                  | 9.5  | 1  | 50 | 100 | 0.35              |
| 125* | 187                 | 6  | 165 | 4                  | 9.5  | 1  | 50 | 100 | 0.37              |
| 140* | 212                 | 6  | 182 | 8                  | 11.5 | 1  | 60 | 120 | 0.73              |
| 180* | 252                 | 6  | 219 | 8                  | 11.5 | 1  | 60 | 120 | 0.91              |
| 200* | 273                 | 6  | 241 | 8                  | 11.5 | 1  | 60 | 130 | 1.33              |
| 250* | 323                 | 6  | 292 | 8                  | 11.5 | 1  | 60 | 130 | 2.16              |
| 300* | 383                 | 8  | 349 | 8                  | 11.5 | 1  | 60 | 140 | 2.87              |
| 315* | 398.0               | 8  | 366 | 8                  | 11.5 | 1  | 60 | 140 | 3.00              |
| 350* | 438.0               | 8  | 405 | 8                  | 11.5 | 1  | 60 | 150 | 3.71              |
| 400* | 484.0               | 8  | 448 | 12                 | 11.5 | 1  | 70 | 170 | 6.28              |
| 500* | 584.0               | 8  | 551 | 12                 | 11.5 | 1  | 70 | 170 | 8.86              |

\* Dimensions acc. to DIN 24154/07/90. When ordering, please specify: connection fitting type, nominal diameter (DN), mounting technique. Other dimensions upon request.



#### 6.6 HYDRA® Stripwound hoses - fittings, hose assemblies

#### Connection fittings type WE, WK

Quick release coupling for extraction, exhaust and conveying hoses type FA, FG, FS, SD

Materials

600 °C

steel

Stainless steel

**Operating temperature** 

Available accessories

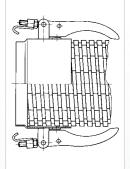
Screen, zinc-plated

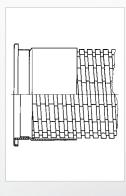
Cover with chain,

zinc-plated steel Handles, 1 pair, wood

#### Design

Type WE80S


- Coupling element with guide and clamp
- From DN 200: with 2 wooden handles
   Type WK20S
- ype vvrzus
- Flanged element with guide,
- Suitable for coupling element

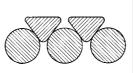

#### Mounting technique

Sealed and riveted, Brazed or clamped

| DN  | Clamp   | Wooden handles |
|-----|---------|----------------|
| 100 | 2 units | -              |
| 125 | 2 units | -              |
| 150 | 2 units | -              |
| 200 | 3 units | 2 units        |
| 250 | 3 units | 2 units        |
| 300 | 3 units | 2 units        |
| 315 | 3 units | 2 units        |

When ordering, please specify: connection fitting type, nominal diameter (DN), mounting technique. Other dimensions on request.






(HYDRA®)

#### Flexible arms

Swan necks





#### Applications

Flexible arm, popularly known as a "swan neck", used, amongst other things, as a lamp bracket hose or microphone arm. Applications are also common in the fibre optic field (such as cold light sources and measuring equipment), for welding shields, traffic-control systems, car phones, medical technology, etc.

#### Design

- Flexible and flexural stiffness at the same time
- Combination of interior round wire with a triangular wire spiral inserted from outside

#### Versions

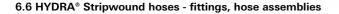
Customised designs are common in many cases, however, we are only able to list the standard series here. If the standard series does not meet your demands and you have applicationspecific requirements, please let us know. Take advantage of our longstanding experience and expert advice.

#### Load capacity

The load capacity of the flexible arms depends on their nominal size (NS) and the length of the support coil. The term 'carrying length' (I) describes the length at which a vibration-free support coil, horizontally clamped on one side, is permitted to sink under its own weight by a distance not exceeding its own outside diameter. The diagram on the next page shows the relationship between nominal size (NS) and maximum load (p).

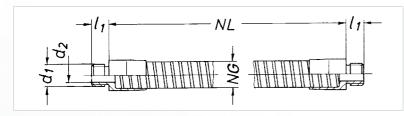
#### Installation note

Flexible arms are to be bent uniformly, the minimum bending radius must not be exceeded.


#### Delivery

At short notice

#### Order text

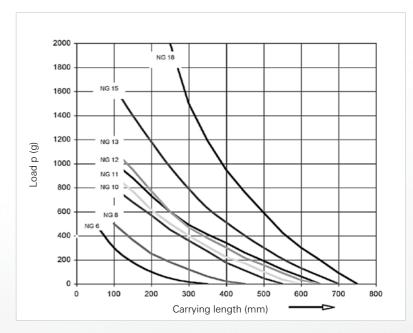

- Flexible arm, bright surface, NL 90 to 4000 mm, type BA 151L11
- Flexible arm, high-gloss nickel-plated, NL 90 to 760 mm, type BA 152L11
- Flexible arm, high-gloss chromiumplated, NL 90 to 760 mm, type BA 153L11
- Flexible arm, matt chromium-plated, NL 90 to 760 mm, type BA 154L11
- Flexible arm, matt black finish, NL 90 to 800 mm, type BA 156L11





#### Flexible arms type BA

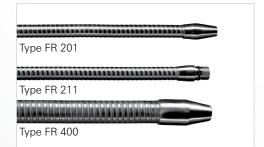
Swan necks




| NS | Suppo   | ort coil    | Con            | necting dimen  | sion           | Minimum<br>bending<br>radius | Weight<br>approx. |
|----|---------|-------------|----------------|----------------|----------------|------------------------------|-------------------|
| -  | Inner Ø | Tolerance   | d <sub>1</sub> | d <sub>2</sub> | l <sub>1</sub> | r <sub>min</sub>             | -                 |
| mm | mm      | mm          | mm             | mm             | mm             | mm                           | kg/ m             |
| 6  | 2.6     | + 0.2/ -0.1 | M8 x 1         | 3.0            | 8              | 35                           | 0.15              |
| 8  | 3.9     | + 0.1/ -0.2 | M10 x 1        | 6.5            | 8              | 45                           | 0.25              |
| 10 | 5.3     | + 0.1/ -0.2 | M10 x 1        | 6.5            | 8              | 55                           | 0.35              |
| 11 | 5.3     | + 0.1/ -0.2 | M10 x 1        | 6.5            | 8              | 50                           | 0.465             |
| 12 | 6.7     | + 0.1/ -0.2 | M10 x 1        | 6.5            | 8              | 60                           | 0.47              |
| 13 | 7.1     | + 0.1/ -0.2 | M10 x 1        | 6.5            | 8              | 60                           | 0.59              |
| 15 | 7.3     | + 0.1/ -0.2 | M10 x 1        | 6.5            | 8              | 65                           | 0.85              |
| 18 | 7.7     | + 0.1/ -0.3 | M10 x 1        | 5.0            | 8              | 120                          | 1.30              |

#### 6.6 HYDRA® Stripwound hoses - fittings, hose assemblies

#### Flexible arms type BA


Swan necks, load diagram





#### Flexible arms type FR

Coolant hoses



#### Applications

Coolant hoses feed liquid and gaseous coolants or lubricants for metal cutting. It is also possible to blow away shavings and metal residue in moulds, workpieces and punched parts.

#### Characteristics

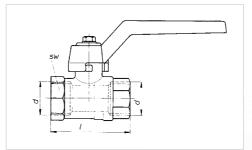
- Small bending radius, therefore can be adjusted to any direction as required.
- Maintain alignment reliably even with heavy pressure without fatigue or vibration.
- Sturdy and wear-resistant
- Resistant to hot shavings, oils and fats



#### Design

- Support coil consists of two profile wires wound round each other
- A PVC hose is inserted in the middle

#### Types


A range of versions are available for different requirements:

- Type FR 201: standard versions with fixed
- screwed plug and outlet nozzle
- Type FR 211:
- refrigerant hose with connection for exchangeable nozzles
- Type FR 400:

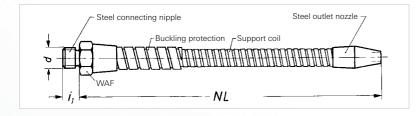
high-pressure hose assembly for heavy mechanical loads e.g. in foundries, in mechanical engineering and toolmaking, with plastic injection machines, on rollers as a separating spray pipe for cutting aids.

#### Flexible arms type FR

Coolant hoses



#### Accessories


- Stopcock ASP 321
- For Hydrafix refrigerant hoses
- Nickel-plated brass

| DN | d<br>Whitworth pipe thread 228/1 | l<br>mm | SW<br>mm |
|----|----------------------------------|---------|----------|
| 6  | G 1/4                            | 45      | 22       |
| 8  | G 3/8                            | 45      | 22       |
| 10 | G 1/2                            | 55      | 27       |
| 16 | G 3/4                            | 65      | 32       |

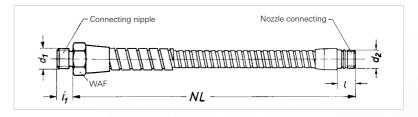


#### Flexible arms type FR 201

Refrigerant hoses



Steel supporting coil with PVC inner hose, screwed plug and outlet nozzle made of steel, nickel-plated hose surface with additional buckling protection up to and including DN 10.


| DN |       | ed plug<br>2-A part 2 | WAF | Minimum<br>bending<br>radius |     |     |     | l length<br>NL | length approx.<br>NL |     |     |  |  |
|----|-------|-----------------------|-----|------------------------------|-----|-----|-----|----------------|----------------------|-----|-----|--|--|
| -  | d     | i <sub>1</sub>        | -   | r <sub>min</sub>             |     |     |     | ± 5            |                      |     |     |  |  |
| -  | Inch  | mm                    | mm  | mm                           |     | mm  |     |                |                      |     |     |  |  |
| 4  | G 1/8 | 8                     | 15  | 64                           | 200 | 250 | 320 | 400            |                      |     |     |  |  |
| 6  | G 1/4 | 10                    | 19  | 72                           | 200 | 250 | 320 | 400            | 500                  | 630 |     |  |  |
| 8  | G 3/8 | 10                    | 24  | 88                           |     | 250 | 320 | 400            | 500                  | 630 |     |  |  |
| 10 | G 1/2 | 12                    | 27  | 110                          |     |     | 320 | 400            | 500                  | 630 | 800 |  |  |
| 16 | G 3/4 | 12                    | 36  | 110                          |     |     |     |                | 500                  | 630 |     |  |  |

Warehouse goods - available immediately, prior sale reserved

When ordering, please specify: type of hose, nominal diameter (DN) and nominal length (NL)

#### Flexible arms type FR 211

Refrigerant hoses

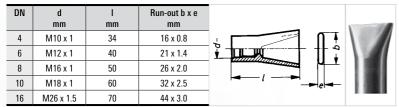


Steel supporting coil with PVC inner hose, screwed plug made of steel, connection with O-ring for exchangeable nozzles made of brass or aluminium, nickelplated hose surface, with additional buckling protection up to and including DN 10.

| DN |       | ed plug<br>2-A part 2 | WAF | Nozzle co<br>tion |      | Minimum<br>bending<br>radius |     | Nominal length approx<br>NL |     |     |     |     |
|----|-------|-----------------------|-----|-------------------|------|------------------------------|-----|-----------------------------|-----|-----|-----|-----|
| -  | d     | i <sub>1</sub>        | -   | i                 |      | r <sub>min</sub>             | ± 5 |                             |     |     |     |     |
| -  | Inch  | mm                    | mm  | mm                | mm   | mm                           |     | mm                          |     |     |     |     |
| 4  | G 1/8 | 8                     | 15  | M10x1             | 12.0 | 64                           | 220 | 250                         | 320 | 400 |     |     |
| 6  | G 1/4 | 10                    | 19  | M12x1             | 15.5 | 72                           | 200 | 250                         | 320 | 400 | 500 |     |
| 8  | G 3/8 | 10                    | 24  | M16x1             | 17.5 | 88                           |     | 250                         | 320 | 400 | 500 | 630 |
| 10 | G 1/2 | 12                    | 27  | M18x1             | 19.0 | 110                          |     |                             | 320 | 400 | 500 | 630 |
| 16 | G 3/4 | 12                    | 36  | M26x1.5           | 27.0 | 110                          |     |                             |     |     | 500 | 630 |

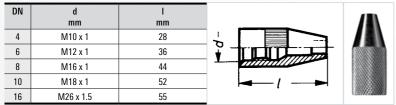
Warehouse goods - available immediately, prior sale reserved

When ordering, please specify: type of hose, nominal diameter (DN) and nominal length (NL)



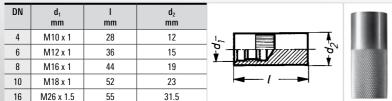

#### Flexible arms type DUE 110, DUE 411, DUE 510

Refrigerant hoses FR 211 accessories: exchangeable nozzles


#### Flat nozzle type DUE 110

Aluminium, shiny




#### Adjusting nozzle type DUE 411

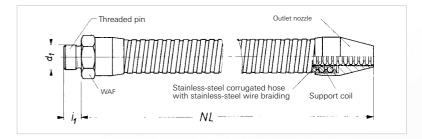
- Removable nozzle
- Nickel-plated brass



#### Special nozzle type DUE 510

- Undrilled nozzle, pre-turned
- For special self-made nozzle outlets
- Uncoated brass

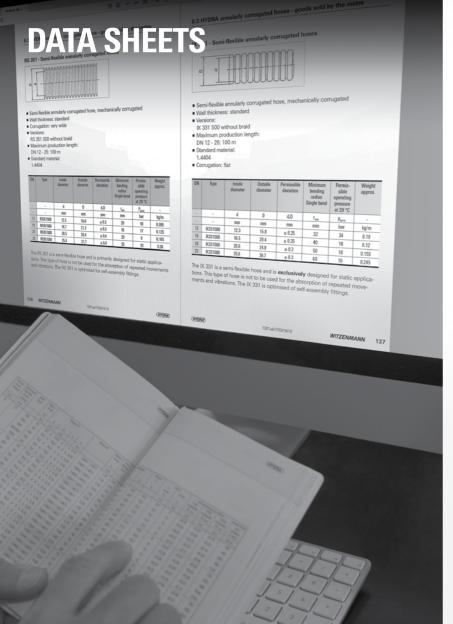



Warehouse goods – immediately available, prior sale reserved. When ordering, please specify: type, nominal diameter (DN)





#### Flexible arms type FR 400


Refrigerant hoses



- Self-supporting high-pressure hose connection up to 250 °C
- Inner annularly corrugated hose with braid, made completely out of stainless steel
- Outer steel support coils, outlet nozzle and threaded brass pins

| DN |                | ed plug<br>2-A part 2 | WAF | Minimum<br>bending<br>radius | Nominal<br>pressure<br>PN | No              | Nominal length a <sub>l</sub><br>NL |     | rox. |
|----|----------------|-----------------------|-----|------------------------------|---------------------------|-----------------|-------------------------------------|-----|------|
| -  | d <sub>1</sub> | i <sub>1</sub>        | -   | r <sub>min</sub>             | -                         |                 |                                     |     |      |
| -  | Inch           | mm                    | mm  | mm                           | bar                       |                 | m                                   | m   |      |
| 6  | G 1/4          | 12                    | 24  | 110                          | 160                       | 320 400 500 630 |                                     |     | 630  |
| 10 | G 3/8          | 12                    | 30  | 110                          | 100                       | 320             | 400                                 | 500 | 630  |

Available at short notice. When ordering, please specify: type of hose, nominal diameter (DN)



#### 7. Data sheets

| 7.1 | Pipes, flanges, pipe bends, threads                   | 262 |
|-----|-------------------------------------------------------|-----|
| 7.2 | Material data sheets                                  | 288 |
| 7.3 | Nominal pressure levels for malleable iron            | 312 |
| 7.4 | Corrosion resistance                                  | 313 |
| 7.5 | Conversion tables, formula symbols, water steam table | 352 |
| 7.6 | Glossary                                              | 362 |
| 7.7 | Inquiry specification                                 | 370 |
|     |                                                       |     |

(HYDRA®)

Seamless and welded steel pipes

DIN EN 10220, version 03.2003 (extract), dimensions and weights

| Nominal<br>diameter | Outside<br>diameter | Standard<br>wall |       |       |       | Length- | related | dimens    | ions (w   | eights) | in kg/m | 1    |      |      |
|---------------------|---------------------|------------------|-------|-------|-------|---------|---------|-----------|-----------|---------|---------|------|------|------|
|                     |                     | thick-<br>ness   |       |       |       |         | Wa      | ll thickı | ness in I | mm      |         |      |      |      |
| DN                  | mm                  | mm               | 1.6   | 1.8   | 2     | 2.3     | 2.6     | 2.9       | 3.2       | 3.6     | 4       | 4.5  | 5    | 5.6  |
| 6                   | 10.2                | 1.6              | 0.339 | 0.373 | 0.404 | 0.448   | 0.487   |           |           |         |         |      |      |      |
| 8                   | 13.5                | 1.8              | 0.47  | 0.519 | 0.567 | 0.635   | 0.699   | 0.758     | 0.813     | 0.879   |         |      |      |      |
| 10                  | 17.2                | 1.8              | 0.616 | 0.684 | 0.75  | 0.845   | 0.936   | 1.02      | 1.10      | 1.21    | 1.30    | 1.41 |      |      |
| 15                  | 21.3                | 2                | 0.777 | 0.866 | 0.952 | 1.08    | 1.20    | 1.32      | 1.43      | 1.57    | 1.71    | 1.86 | 2.01 |      |
| 20                  | 26.9                | 2                | 0.998 | 1.11  | 1.23  | 1.40    | 1.56    | 1.72      | 1.87      | 2.07    | 2.26    | 2.49 | 2.70 | 2.94 |
| 25                  | 33.7                | 2                | 1.27  | 1.42  | 1.56  | 1.78    | 1.99    | 2.20      | 2.41      | 2.67    | 2.93    | 3.24 | 3.54 | 3.88 |
| 32                  | 42.4                | 2.3              | 1.61  | 1.80  | 1.99  | 2.27    | 2.55    | 2.82      | 3.09      | 3.44    | 3.79    | 4.21 | 4.61 | 5.08 |
| 40                  | 48.3                | 2.3              | 1.84  | 2.06  | 2.28  | 2.61    | 2.93    | 3.25      | 3.56      | 3.97    | 4.37    | 4.86 | 5.34 | 5.90 |
| 50                  | 60.3                | 2.3              | 2.32  | 2.60  | 2.88  | 3.29    | 3.70    | 4.11      | 4.51      | 5.03    | 5.55    | 6.19 | 6.82 | 7.55 |
| 65                  | 76.1                | 2.6              | 2.94  | 3.30  | 3.65  | 4.19    | 4.71    | 5.24      | 5.75      | 6.44    | 7.11    | 7.95 | 8.77 | 9.74 |
| 80                  | 88.9                | 2.9              | 3.44  | 3.87  | 4.29  | 4.91    | 5.53    | 6.15      | 6.76      | 7.57    | 8.38    | 9.37 | 10.3 | 11.5 |
| 100                 | 114.3               | 3.2              | 4.45  | 4.99  | 5.54  | 6.35    | 7.16    | 7.97      | 8.77      | 9.83    | 10.9    | 12.2 | 13.5 | 15.0 |
| 125                 | 139.7               | 3.6              | 5.45  | 6.12  | 6.79  | 7.79    | 8.79    | 9.78      | 10.8      | 12.1    | 13.4    | 15.0 | 16.6 | 18.5 |
| 150                 | 168.3               | 4                | 6.58  | 7.39  | 8.20  | 9.42    | 10.6    | 11.8      | 13.0      | 14.6    | 16.2    | 18.2 | 20.1 | 22.5 |
| 200                 | 219.1               | 4.5              |       | 9.65  | 10.7  | 12.3    | 13.9    | 15.5      | 17.0      | 19.1    | 21.2    | 23.8 | 26.4 | 29.5 |
| 250                 | 273.0               | 5                |       |       | 13.4  | 15.4    | 17.3    | 19.3      | 21.3      | 23.9    | 26.5    | 29.8 | 33.0 | 36.9 |
| 300                 | 323.9               | 5.6              |       |       |       |         | 20.6    | 23.0      | 25.3      | 28.4    | 31.6    | 35.4 | 39.3 | 44.0 |

#### 7.1 Pipes, flanges, pipe bends, threads

Seamless and welded steel pipes

DIN EN 10220, version 03.2003 (extract), dimensions and weights

| Nominal<br>diameter | Outside<br>diameter | Standard<br>wall |      |      |      | Length- | related | dimens    | ions (w   | eights) | in kg/m | 1    |      |      |
|---------------------|---------------------|------------------|------|------|------|---------|---------|-----------|-----------|---------|---------|------|------|------|
|                     |                     | thick-<br>ness   |      |      |      |         | Wa      | ll thickr | ness in i | mm      |         |      |      |      |
| DN                  | mm                  | mm               | 6.3  | 7.1  | 8    | 8.8     | 10      | 11        | 12.5      | 14.2    | 16      | 17.5 | 20   | 22.2 |
| 6                   | 10.2                | 1.6              |      |      |      |         |         |           |           |         |         |      |      |      |
| 8                   | 13.5                | 1.8              |      |      |      |         |         |           |           |         |         |      |      |      |
| 10                  | 17.2                | 1.8              |      |      |      |         |         |           |           |         |         |      |      |      |
| 15                  | 21.3                | 2                |      |      |      |         |         |           |           |         |         |      |      |      |
| 20                  | 26.9                | 2                | 3.20 | 3.47 | 3.73 |         |         |           |           |         |         |      |      |      |
| 25                  | 33.7                | 2                | 4.26 | 4.66 | 5.07 | 5.40    |         |           |           |         |         |      |      |      |
| 32                  | 42.4                | 2.3              | 5.61 | 6.18 | 6.79 | 7.29    | 7.99    |           |           |         |         |      |      |      |
| 40                  | 48.3                | 2.3              | 6.53 | 7.21 | 7.95 | 8.57    | 9.45    | 10.1      | 11.0      |         |         |      |      |      |
| 50                  | 60.3                | 2.3              | 8.39 | 9.32 | 10.3 | 11.2    | 12.4    | 13.4      | 14.7      | 16.1    | 17.5    |      |      |      |
| 65                  | 76.1                | 2.6              | 10.8 | 12.1 | 13.4 | 14.6    | 16.3    | 17.7      | 19.6      | 21.7    | 23.7    | 25.3 | 27.7 |      |
| 80                  | 88.9                | 2.9              | 12.8 | 14.3 | 16.0 | 17.4    | 19.5    | 21.1      | 23.6      | 26.2    | 28.8    | 30.8 | 34.0 | 36.5 |
| 100                 | 114.3               | 3.2              | 16.8 | 18.8 | 21.0 | 22.9    | 25.7    | 28.0      | 31.4      | 35.1    | 38.8    | 41.8 | 46.5 | 50.4 |
| 125                 | 139.7               | 3.6              | 20.7 | 23.2 | 26.0 | 28.4    | 32.0    | 34.9      | 39.2      | 43.9    | 48.8    | 52.7 | 59.0 | 64.3 |
| 150                 | 168.3               | 4                | 25.2 | 28.2 | 31.6 | 34.6    | 39.0    | 42.7      | 48.0      | 54.0    | 60.1    | 65.1 | 73.1 | 80.0 |
| 200                 | 219.1               | 4.5              | 33.1 | 37.1 | 41.6 | 45.6    | 51.6    | 56.5      | 63.7      | 71.8    | 80.1    | 87.0 | 98.2 | 108  |
| 250                 | 273.0               | 5                | 41.4 | 46.6 | 52.3 | 57.3    | 64.9    | 71.1      | 80.3      | 90.6    | 101     | 110  | 125  | 137  |
| 300                 | 323.9               | 5.6              | 49.3 | 55.5 | 62.3 | 68.4    | 77.4    | 84.9      | 96.0      | 108     | 121     | 132  | 150  | 165  |



Austenitic, stainless steel pipes

DIN EN ISO 1127, version 03.1997 (extract), dimensions and weights

| No-<br>minal  | Out-<br>side  |       |       | L     | ength-re |         |          | ; (weight | s) in kg/ | m    |      |      |
|---------------|---------------|-------|-------|-------|----------|---------|----------|-----------|-----------|------|------|------|
| diame-<br>ter | diame-<br>ter |       |       |       |          | wall tr | nickness | in mm     |           |      |      |      |
| DN            | mm            | 1.0   | 1.2   | 1.6   | 2.0      | 2.3     | 2.6      | 2.9       | 3.2       | 3.6  | 4.0  | 4.5  |
| 6             | 10.2          | 0.23  | 0.27  | 0.344 | 0.41     |         |          |           |           |      |      |      |
| 8             | 13.5          | 0.313 | 0.369 | 0.477 | 0.575    | 0.645   |          | 0.789     |           |      |      |      |
| 10            | 17.2          | 0.406 |       | 0.625 | 0.761    | 0.858   |          |           | 1.12      |      |      |      |
| 15            | 21.3          | 0.509 |       | 0.789 | 0.966    |         | 1.22     |           | 1.45      |      | 1.74 |      |
| 20            | 26.9          | 0.649 |       | 1.01  | 1.25     |         | 1.58     | 1.75      | 1.9       |      | 2.29 |      |
| 25            | 33.7          | 0.818 | 0.976 | 1.29  | 1.58     | 1.81    | 2.02     |           | 2.45      |      |      | 3.29 |
| 32            | 42.4          |       |       | 1.63  | 2.02     |         | 2.59     |           | 3.14      | 3.49 |      |      |
| 40            | 48.3          |       |       | 1.87  | 2.31     |         | 2.97     |           | 3.61      | 4.03 |      |      |
| 50            | 60.3          |       |       | 2.35  | 2.92     | 3.34    | 3.76     | 4.17      | 4.58      | 5.11 | 5.83 |      |
| 65            | 76.1          |       |       | 2.98  | 3.7      | 4.25    | 4.78     | 5.32      |           | 6.54 | 7.22 |      |
| 80            | 88.9          |       |       | 3.49  | 4.35     | 4.98    | 5.61     | 6.24      | 6.86      | 7.68 | 8.51 |      |
| 100           | 114.3         |       |       | 4.52  | 5.62     |         | 7.27     | 8.09      |           | 9.98 |      | 12.4 |
| 125           | 139.7         |       |       | 5.53  | 6.89     |         | 8.92     |           | 11        |      | 13.6 |      |
| 150           | 168.3         |       |       | 6.68  | 8.32     |         | 10.8     |           | 13.2      |      | 16.4 | 18.5 |
| 200           | 219.1         |       |       |       | 10.9     |         | 14.1     |           | 17.3      | 19.4 | 21.5 |      |
| 250           | 273.0         |       |       |       | 13.6     |         | 17.6     |           | 21.6      | 24.3 | 26.9 |      |
| 300           | 323.9         |       |       |       |          |         | 20.9     |           | 25.7      |      | 32.1 | 35.9 |

#### 7.1 Pipes, flanges, pipe bends, threads

Austenitic, stainless steel pipes

DIN EN ISO 1127, version 03.1997 (extract), dimensions and weights

| No-<br>minal<br>diame- | Out-<br>side<br>diame- |      |      | Len  | -    |      | sions (wei<br>ness in m | ights) in k | :g/m |      |      |
|------------------------|------------------------|------|------|------|------|------|-------------------------|-------------|------|------|------|
| ter                    | ter                    |      |      |      | v    |      | ness in m               | m           |      |      |      |
| DN                     | mm                     | 5.0  | 5.6  | 6.3  | 7.1  | 8.0  | 8.8                     | 10.0        | 11.0 | 12.5 | 14.2 |
| 6                      | 10.2                   |      |      |      |      |      |                         |             |      |      |      |
| 8                      | 13.5                   |      |      |      |      |      |                         |             |      |      |      |
| 10                     | 17.2                   |      |      |      |      |      |                         |             |      |      |      |
| 15                     | 21.3                   |      |      |      |      |      |                         |             |      |      |      |
| 20                     | 26.9                   |      |      |      |      |      |                         |             |      |      |      |
| 25                     | 33.7                   |      |      |      |      |      |                         |             |      |      |      |
| 32                     | 42.4                   | 4.68 |      |      |      |      |                         |             |      |      |      |
| 40                     | 48.3                   | 5.42 |      |      |      |      |                         |             |      |      |      |
| 50                     | 60.3                   |      | 7.66 |      |      |      |                         |             |      |      |      |
| 65                     | 76.1                   | 8.9  |      |      | 12.3 |      |                         |             |      |      |      |
| 80                     | 88.9                   |      | 11.7 |      |      | 16.2 |                         |             |      |      |      |
| 100                    | 114.3                  |      |      | 17.1 |      |      | 23.2                    |             |      |      |      |
| 125                    | 139.7                  | 16.8 |      | 21   | 23.5 |      |                         | 32.5        |      |      |      |
| 150                    | 168.3                  | 20.4 |      |      | 28.6 |      |                         |             | 43.3 |      |      |
| 200                    | 219.1                  |      |      | 33.6 |      | 42.2 |                         |             |      | 64.7 |      |
| 250                    | 273.0                  |      |      | 42   |      |      |                         | 65.9        |      | 81.5 | 92   |
| 300                    | 323.9                  | 39.9 |      |      | 56.3 |      |                         | 78.6        |      | 97.4 |      |

| Tolerance<br>class | Tolerance limits for outside diameter |                         |  |  |  |  |  |  |
|--------------------|---------------------------------------|-------------------------|--|--|--|--|--|--|
| D <sub>1</sub>     | ± 1.5 %                               | with min. $\pm$ 0.75 mm |  |  |  |  |  |  |
| D <sub>2</sub>     | ±1%                                   | with min. $\pm$ 0.50 mm |  |  |  |  |  |  |
| D <sub>3</sub>     | ± 0.75 %                              | with min. $\pm$ 0.30 mm |  |  |  |  |  |  |
| D <sub>4</sub>     | ± 0.5 %                               | with min. $\pm$ 0.10 mm |  |  |  |  |  |  |

| Tolerance<br>class | Dimension tolerances for wall thickness |                         |  |  |  |  |  |  |
|--------------------|-----------------------------------------|-------------------------|--|--|--|--|--|--|
| T <sub>1</sub>     | ± 15 %                                  | with min. $\pm$ 0.60 mm |  |  |  |  |  |  |
| T <sub>2</sub>     | ± 12.5 %                                | with min. $\pm$ 0.40 mm |  |  |  |  |  |  |
| T <sub>3</sub>     | ± 10 %                                  | with min. $\pm$ 0.20 mm |  |  |  |  |  |  |
| T <sub>4</sub>     | ± 7.5 %                                 | with min. $\pm$ 0.15 mm |  |  |  |  |  |  |
| T <sub>5</sub>     | ±5%                                     | with min. $\pm$ 0.10 mm |  |  |  |  |  |  |

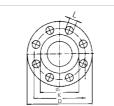
(HYDRA®)

Types of joint for steel pipes, guidelines for fusion welding of butt joints, weld edge preparation according to DIN EN ISO 9692-1, version 05.2004

|                     |                        |                             |               |                             |                                               |     | Dimension              | s                                 |               |
|---------------------|------------------------|-----------------------------|---------------|-----------------------------|-----------------------------------------------|-----|------------------------|-----------------------------------|---------------|
| Code<br>num-<br>ber | Wall<br>thick-<br>ness | Name                        | Sym-<br>bol¹) | Joint types (cross section) | (cross section) Bevel angle<br>approx.        |     | Root<br>spa-<br>cing²) | Thick-<br>ness<br>of root<br>face | Root<br>depth |
| -                   | s                      | -                           | -             | -                           | α                                             | β   | b                      | С                                 | h             |
| -                   | mm                     | -                           | -             | -                           | grd                                           | grd | mm                     | mm                                | mm            |
| 1                   | Up<br>to 3             | square<br>butt              |               |                             | -                                             | -   | 0 to 3                 | -                                 |               |
| 2                   | Up to<br>16            | single<br>V                 | $\vee$        |                             | 40 to<br>60 for<br>SG<br>60 for<br>E and<br>G | -   | 0 to 4                 | Up<br>to 2                        | -             |
| 3                   | over<br>12             | single<br>U                 | Ŷ             |                             | 60                                            | 8   | 0 to 3                 | Up<br>to 2                        | -             |
| 4                   | over<br>12             | single<br>U<br>on<br>V-root | Ų             |                             |                                               | 8   | 0 to 3                 | -                                 | ~ 4           |

1) For additional signs, see DIN 1912.

2) The indicated dimensions apply to tacked condition.



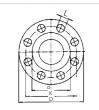

(HYDRA®)

### 7.1 Pipes, flanges, pipe bends, threads

Standard flanges DIN EN 1092: version 04.2013 (extract)

#### Connection dimensions PN PN 2.5 / PN 6




|                        | DIN EN 1092    |
|------------------------|----------------|
| Outside diameter       | D              |
| Sealing ritch diameter | d <sub>1</sub> |
| Hole circle diameter   | К              |
| Bolt hole diameter     | L              |

| No-<br>minal<br>dia-<br>meter |     |                       | Nom     | ninal pressu  | re 2.5      |         | Nominal pressure 6 |                |     |          |        |    |  |
|-------------------------------|-----|-----------------------|---------|---------------|-------------|---------|--------------------|----------------|-----|----------|--------|----|--|
|                               |     |                       |         | Bo            | lts         |         |                    |                |     | Bo       | lts    |    |  |
| DN                            | D   | <b>d</b> <sub>1</sub> | К       | Quantity      | Thread      | L       | D                  | d <sub>1</sub> | К   | Quantity | Thread | L  |  |
| 10                            |     |                       |         |               |             |         | 75                 | 35             | 50  | 4        | M 10   | 11 |  |
| 15                            |     |                       |         |               |             |         | 80                 | 40             | 55  | 4        | M 10   | 11 |  |
| 20                            |     |                       |         |               |             |         | 90                 | 50             | 65  | 4        | M 10   | 11 |  |
| 25                            |     |                       |         |               |             |         |                    | 60             | 75  | 4        | M 10   | 11 |  |
| 32                            |     |                       |         |               |             |         |                    | 70             | 90  | 4        | M 12   | 14 |  |
| 40                            |     |                       |         |               |             |         | 130                | 80             | 100 | 4        | M 12   | 14 |  |
| 50                            | Con | nectior               | n dimer | nsions, see i | nominal pre | ssure 6 | 140                | 90             | 110 | 4        | M 12   | 14 |  |
| 65                            |     |                       |         |               |             |         | 160                | 110            | 130 | 4        | M 12   | 14 |  |
| 80                            |     |                       |         |               |             |         | 190                | 128            | 150 | 4        | M 16   | 18 |  |
| 100                           |     |                       |         |               |             |         | 210                | 148            | 170 | 4        | M 16   | 18 |  |
| 125                           |     |                       |         |               |             |         | 240                | 178            | 200 | 8        | M 16   | 18 |  |
| 150                           |     |                       |         |               |             |         | 265                | 202            | 225 | 8        | M 16   | 18 |  |
| 200                           |     |                       |         |               |             |         | 320                | 258            | 280 | 8        | M 16   | 18 |  |
| 250                           |     |                       |         |               |             |         | 375                | 312            | 335 | 12       | M 16   | 18 |  |
| 300                           |     |                       |         |               |             |         | 440                | 365            | 395 | 12       | M 20   | 22 |  |

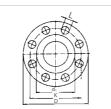
1301uk/8/05/20/pdf

Standard flanges DIN EN 1092: version 04.2013 (extract)

#### Connection dimensions PN 10 / PN 16



|                        | DIN EN 1092    |
|------------------------|----------------|
| Outside diameter       | D              |
| Sealing ritch diameter | d <sub>1</sub> |
| Hole circle diameter   | к              |
| Bolt hole diameter     | L              |


| Nominal<br>diameter |     |                | Nomi    | nal pressur  | e 10   |    | Nominal pressure 16     |                |        |              |        |    |
|---------------------|-----|----------------|---------|--------------|--------|----|-------------------------|----------------|--------|--------------|--------|----|
|                     |     |                |         | Bo           | lts    |    |                         |                |        | Bolts        |        |    |
| DN                  | D   | d <sub>1</sub> | К       | Quantity     | Thread | L  | D                       | d <sub>1</sub> | К      | Quantity     | Thread | L  |
| 10                  |     |                |         |              |        |    |                         |                |        |              |        |    |
| 15                  |     |                |         |              |        |    |                         |                |        |              |        |    |
| 20                  | ]   |                | Connec  | ction dimen  | sions, |    |                         |                | Conneo | ction dimens | sions, |    |
| 25                  |     | :              | see nor | ninal pressu | ure 40 |    | see nominal pressure 40 |                |        |              |        |    |
| 32                  |     |                |         |              |        |    |                         |                |        |              |        |    |
| 40                  |     |                |         |              |        |    |                         |                |        |              |        |    |
| 50                  |     |                |         |              |        |    | 165                     | 102            | 125    | 4            | M16    | 18 |
| 65                  | 1   |                |         |              |        |    | 185                     | 122            | 145    | 8            | M16    | 18 |
| 80                  |     |                | Conneo  | ction dimen  | sions, |    | 200                     | 138            | 160    | 8*           | M16    | 18 |
| 100                 |     | :              | see nor | ninal pressu | ure 16 |    | 220                     | 158            | 180    | 8            | M 16   | 18 |
| 125                 |     |                |         |              |        |    | 250                     | 188            | 210    | 8            | M 16   | 18 |
| 150                 |     |                |         |              |        |    | 285                     | 212            | 240    | 8            | M 20   | 22 |
| 200                 | 340 | 268            | 295     | 8            | M 20   | 22 | 340                     | 268            | 295    | 12           | M 20   | 22 |
| 250                 | 395 | 320            | 350     | 12           | M 20   | 22 | 405                     | 320            | 355    | 12           | M 24   | 26 |
| 300                 | 445 | 370            | 400     | 12           | M 20   | 22 | 460                     | 378            | 410    | 12           | M 24   | 26 |

\* DIN EN 1092: 8 screws, 4 screws permissible for steel flanges by agreement

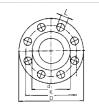
#### 7.1 Pipes, flanges, pipe bends, threads

Standard flanges DIN EN 1092: version 04.2013 (extract)

#### Connection dimensions PN 25 / PN 40



|                        | DIN EN 1092    |
|------------------------|----------------|
| Outside diameter       | D              |
| Sealing ritch diameter | d <sub>1</sub> |
| Hole circle diameter   | К              |
| Bolt hole diameter     | L              |

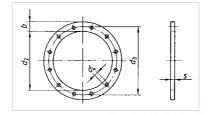

| No-<br>minal<br>dia-<br>meter |      |                | Non   | ninal pressu | re 25       |         | Nominal pressure 40 |                |     |          |        |    |
|-------------------------------|------|----------------|-------|--------------|-------------|---------|---------------------|----------------|-----|----------|--------|----|
|                               |      |                |       | Bo           | lts         |         |                     |                |     | Bo       | lts    |    |
| DN                            | D    | d <sub>1</sub> | К     | Quantity     | Thread      | L       | D                   | d <sub>1</sub> | К   | Quantity | Thread | L  |
| 10                            |      |                |       |              |             |         | 90                  | 40             | 60  | 4        | M 12   | 14 |
| 15                            |      |                |       |              |             |         | 95                  | 45             | 65  | 4        | M 12   | 14 |
| 20                            |      |                |       |              |             |         | 105                 | 58             | 75  | 4        | M 12   | 14 |
| 25                            |      |                |       |              |             |         | 115                 | 68             | 85  | 4        | M 12   | 14 |
| 32                            |      |                |       |              |             |         | 140                 | 78             | 100 | 4        | M 16   | 18 |
| 40                            | Conr | ection         | dimen | sions, see n | ominal pres | sure 40 | 150                 | 88             | 110 | 4        | M 16   | 18 |
| 50                            |      |                |       |              |             |         | 165                 | 102            | 125 | 4        | M 16   | 18 |
| 65                            |      |                |       |              |             |         | 185                 | 122            | 145 | 8        | M 16   | 18 |
| 80                            |      |                |       |              |             |         | 200                 | 138            | 160 | 8        | M 16   | 18 |
| 100                           |      |                |       |              |             |         | 235                 | 162            | 190 | 8        | M 20   | 22 |
| 125                           |      |                |       |              |             |         | 270                 | 188            | 220 | 8        | M 24   | 26 |
| 150                           |      |                |       |              |             |         | 300                 | 218            | 250 | 8        | M 24   | 26 |
| 200                           | 360  | 278            | 310   | 12           | M 24        | 26      | 375                 | 285            | 320 | 12       | M 27   | 30 |
| 250                           | 425  | 335            | 370   | 12           | M 27        | 30      | 450                 | 345            | 385 | 12       | M 30   | 33 |
| 300                           | 485  | 395            | 430   | 16           | M 27        | 30      | 515                 | 410            | 450 | 16       | M 30   | 33 |



(HYDRA)

Standard flanges DIN EN 1092: version 04.2013 (extract)

#### Connection dimensions PN 63 / PN 100




|                        | DIN EN 1092    |
|------------------------|----------------|
| Outside diameter       | D              |
| Sealing ritch diameter | d <sub>1</sub> |
| Hole circle diameter   | К              |
| Bolt hole diameter     | L              |
|                        |                |

| No-<br>minal<br>dia-<br>meter |      |                | Nom    | ninal pressu | ire 63      |          | Nominal pressure 100 |                |     |          |        |    |
|-------------------------------|------|----------------|--------|--------------|-------------|----------|----------------------|----------------|-----|----------|--------|----|
|                               |      |                |        | Bo           | lts         |          |                      |                |     | Bo       | lts    |    |
| DN                            | D    | d <sub>1</sub> | К      | Quantity     | Thread      | L        | D                    | d <sub>1</sub> | К   | Quantity | Thread | L  |
| 10                            |      |                |        |              |             |          | 100                  | 40             | 70  | 4        | M 12   | 14 |
| 15                            |      |                |        |              |             |          | 105                  | 45             | 75  | 4        | M 12   | 14 |
| 20                            | Conn | ection         | dimens | sions, see n | ominal pres | sure 100 | 130                  | 58             | 90  | 4        | M 16   | 18 |
| 25                            |      |                |        |              |             |          | 140                  | 68             | 100 | 4        | M 16   | 18 |
| 32                            |      |                |        |              |             |          | 155                  | 78             | 110 | 4        | M 20   | 22 |
| 40                            |      |                |        |              |             |          | 170                  | 88             | 125 | 4        | M 20   | 22 |
| 50                            | 180  | 102            | 135    | 4            | M 20        | 22       | 195                  | 102            | 145 | 4        | M 24   | 26 |
| 65                            | 205  | 122            | 160    | 8            | M 20        | 22       | 220                  | 122            | 170 | 8        | M 24   | 26 |
| 80                            | 215  | 138            | 170    | 8            | M 20        | 22       | 230                  | 138            | 180 | 8        | M 24   | 26 |
| 100                           | 250  | 162            | 200    | 8            | M 24        | 26       | 265                  | 162            | 210 | 8        | M 27   | 30 |
| 125                           | 295  | 188            | 240    | 8            | M 27        | 30       | 315                  | 188            | 250 | 8        | M 30   | 33 |
| 150                           | 345  | 218            | 280    | 8            | M 30        | 33       | 355                  | 218            | 290 | 12       | M 30   | 33 |
| 200                           | 415  | 285            | 345    | 12           | M 33        | 36       | 430                  | 285            | 360 | 12       | M 33   | 36 |
| 250                           | 470  | 345            | 400    | 12           | M 33        | 36       | 505                  | 345            | 430 | 12       | M 36   | 39 |
| 300                           | 530  | 410            | 460    | 16           | M 33        | 36       | 585                  | 410            | 500 | 16       | M 39   | 42 |

#### 7.1 Pipes, flanges, pipe bends, threads

Plain flanges DIN 24154 part 2: version 07.1990 (extract)



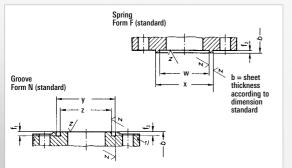
| No-<br>minal  | Inside o       | diameter  | Width x<br>thickness | Hole circle<br>diameter | Bolt hole<br>diameter | Number<br>of holes | Bolts | Weight<br>approx. |
|---------------|----------------|-----------|----------------------|-------------------------|-----------------------|--------------------|-------|-------------------|
| dia-<br>meter |                | Tolerance |                      | ± 0.5                   | ± 0.5                 |                    |       |                   |
| DN            | d <sub>2</sub> | -         | b x s <sup>1</sup>   | d <sub>3</sub>          | d <sub>4</sub>        | -                  | -     | -                 |
| -             | mm             | -         | mm                   | mm                      | mm                    | -                  | -     | kg                |
| 71            | 73             |           |                      | 110                     |                       |                    |       | 0.44              |
| 80            | 82             |           |                      | 118                     |                       |                    |       | 0.48              |
| 90            | 92             | + 1       | 30 x 6               | 128                     | 9.5                   | 4                  | M 8   | 0.53              |
| 100           | 102            | 0         |                      | 139                     |                       |                    |       | 0.55              |
| 112           | 114            |           |                      | 151                     |                       |                    |       | 0.63              |
| 125           | 127            |           |                      | 165                     |                       |                    |       | 0.68              |
| 140           | 142            |           |                      | 182                     |                       |                    |       | 0.87              |
| 160           | 162            |           |                      | 200                     |                       |                    |       | 0.98              |
| 180           | 182            | + 1.5     | 35 x 6               | 219                     | 11.5                  | 8                  | M 10  | 1.08              |
| 200           | 203            | 0         |                      | 241                     |                       |                    |       | 1.19              |
| 224           | 227            |           |                      | 265                     |                       |                    |       | 1.32              |
| 250           | 253            |           |                      | 292                     |                       |                    |       | 1.45              |
| 280           | 283            |           |                      | 332                     |                       |                    |       | 2.51              |
| 315           | 318            |           |                      | 366                     |                       | 8                  |       | 2.98              |
| 355           | 358            | + 1.5     | 40 x 8               | 405                     | 11.5                  |                    | M10   | 3.10              |
| 400           | 404            | 0         |                      | 448                     |                       |                    |       | 3.44              |
| 450           | 454            | 1         |                      | 497                     |                       | 12                 |       | 3.84              |
| 500           | 504            |           |                      | 551                     |                       |                    |       | 4.13              |

<sup>1</sup>) Tolerance limits for width b and thickness s according to DIN 1016, **bold-printed** nominal distances are preferable

(HYDRA)

(HYDRA)

Comparison of sealing surfaces according to the previous DIN standards and DIN EN 1092-1

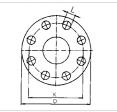

| Old descriptions according to DIN | New descriptions according to DIN EN 1092-1 |
|-----------------------------------|---------------------------------------------|
| Form A                            | Form A                                      |
| Form B                            |                                             |
| Form C                            | Form B 1                                    |
| Form D                            |                                             |
| Form E                            | Form B 2                                    |
| Form F                            | Form C                                      |
| Form N                            | Form D                                      |
| Form V 13                         | Form E                                      |
| Form R 13                         | Form F                                      |
| Form R 14                         | Form G                                      |
| Form V 14                         | Form H                                      |

Flange with tongue or groove DIN EN 1092: version 06.2002 (extract)

#### 7.1 Pipes, flanges, pipe bends, threads

| No-<br>minal<br>dia-<br>meter |           | Tongue    |                | Groove    |           |                |  |  |
|-------------------------------|-----------|-----------|----------------|-----------|-----------|----------------|--|--|
| DN                            | w         | х         | f <sub>2</sub> | Z         | у         | f <sub>3</sub> |  |  |
|                               | +0.5<br>0 | 0<br>-0.5 | +0.5<br>0      | 0<br>-0.5 | +0.5<br>0 | +0.5<br>0      |  |  |
| 10                            | 24        | 34        |                | 23        | 35        |                |  |  |
| 15                            | 29        | 39        |                | 28        | 40        |                |  |  |
| 20                            | 36        | 50        |                | 35        | 51        |                |  |  |
| 25                            | 43        | 57        |                | 42        | 58        |                |  |  |
| 32                            | 51        | 65        | 4.5            | 50        | 66        | 4.0            |  |  |
| 40                            | 61        | 75        |                | 60        | 76        |                |  |  |
| 50                            | 73        | 87        |                | 72        | 88        |                |  |  |
| 65                            | 95        | 109       |                | 94        | 110       |                |  |  |
| 80                            | 106       | 120       |                | 105       | 121       |                |  |  |
| 100                           | 129       | 149       |                | 128       | 150       |                |  |  |
| 125                           | 155       | 175       |                | 154       | 176       |                |  |  |
| 150                           | 183       | 203       | 5.0            | 182       | 204       | 4.5            |  |  |
| 200                           | 239       | 259       |                | 238       | 260       |                |  |  |
| 250                           | 292       | 312       |                | 291       | 313       |                |  |  |
| 300                           | 343       | 363       |                | 342       | 364       |                |  |  |

#### Dimensions (tongue, groove), PN 10 to PN 160 / 100



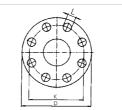

| DI             | I EN 1092                |
|----------------|--------------------------|
| w              |                          |
| Х              |                          |
| z              |                          |
| у              |                          |
| $f_1$          |                          |
| f <sub>2</sub> |                          |
| f <sub>3</sub> |                          |
|                | aling face twisted:      |
| ∛/:            | $=\sqrt{R_z 3, 2-12, 5}$ |



Flange as per USA standard ANSI B 16.5

#### **Connection dimensions Class 150**




- Outside diameter D Κ
- Hole circle diameter
- Bolt hole diameter L

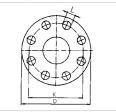
| Non  | ninal |         | F        | lange       |            |               |               | Bolts |        |      |
|------|-------|---------|----------|-------------|------------|---------------|---------------|-------|--------|------|
| dian | neter | Outside | diameter | Hole circle | e diameter | Quan-<br>tity | Hole diameter |       | Thread |      |
| D    | N     |         | D        | K - L       |            | К -           |               | L     | -      |      |
| -    | Inch  | mm      | Inch     | mm          | mm Inch    |               | mm            | Inch  | mm     | Inch |
| 15   | 1/2   | 88.9    | 3 1/2    | 60.3        | 2 ¾        | 4             | 15.9          | 5%    | 12.7   | 1/2  |
| 20   | 3⁄4   | 98.4    | 3 1/8    | 69.8        | 2 3⁄4      | 4             | 15.9          | 5%    | 12.7   | 1/2  |
| 25   | 1     | 107.9   | 4 1/4    | 79.4        | 3 1/8      | 4             | 15.9          | 5%    | 12.7   | 1/2  |
| 32   | 1 1⁄4 | 117.5   | 4 %      | 88.9        | 3 1/2      | 4             | 15.9          | 5%    | 12.7   | 1/2  |
| 40   | 1 1/2 | 127.0   | 5        | 98.4        | 3 1/8      | 4             | 15.9          | 5%    | 12.7   | 1/2  |
| 50   | 2     | 152.4   | 6        | 120.6       | 4 3⁄4      | 4             | 19.0          | 3⁄4   | 15.9   | 5%   |
| 65   | 2 1/2 | 177.8   | 7        | 139.7       | 5 1/2      | 4             | 19.0          | 3⁄4   | 15.9   | 5%   |
| 80   | 3     | 190.5   | 7 1/2    | 152.4       | 6          | 4             | 19.0          | 3⁄4   | 15.9   | 5%   |
| 100  | 4     | 228.6   | 9        | 190.5       | 7 1/2      | 8             | 19.0          | 3⁄4   | 15.9   | 5%   |
| 125  | 5     | 254.0   | 10       | 215.9       | 8 ½        | 8             | 22.2          | 7∕8   | 19.0   | 3⁄4  |
| 150  | 6     | 279.4   | 11       | 241.3       | 9 ½        | 8             | 22.2          | 7∕8   | 19.0   | 3⁄4  |
| 200  | 8     | 342.9   | 13 ½     | 298.4       | 11 3⁄4     | 8             | 22.2          | 7∕8   | 19.0   | 3⁄4  |
| 250  | 10    | 406.4   | 16       | 361.9       | 14 1⁄4     | 12            | 25.4          | 1     | 22.2   | 7∕8  |
| 300  | 12    | 482.6   | 19       | 431.8       | 17         | 12            | 25.4          | 1     | 22.2   | 7/8  |

#### 7.1 Pipes, flanges, pipe bends, threads

Flange as per USA standard ANSI B 16.5

#### **Connection dimensions Class 300**




- D Outside diameter
- Κ Hole circle diameter
- Bolt hole diameter L

|      | ninal |         | F        | lange      |                      |    | Bolts   |        |      |      |  |  |
|------|-------|---------|----------|------------|----------------------|----|---------|--------|------|------|--|--|
| dian | neter | Outside | diameter | Hole circl | Hole circle diameter |    | Hole di | ameter | Thr  | ead  |  |  |
| D    | N     | l       | )        |            | K                    | -  |         | Ĺ      | -    |      |  |  |
| -    | Inch  | mm      | Inch     | mm         | Inch                 | -  | mm      | Inch   | mm   | Inch |  |  |
| 15   | 1/2   | 95.2    | 3 ½      | 66.7       | 2 %                  | 4  | 15.9    | 5%     | 12.7 | 1/2  |  |  |
| 20   | 3/4   | 117.5   | 3 1/8    | 82.5       | 3 1⁄4                | 4  | 19.0    | 3⁄4    | 15.9 | 5%   |  |  |
| 25   | 1     | 123.8   | 4 1/4    | 88.9       | 3 ½                  | 4  | 19.0    | 3⁄4    | 15.9 | 5%   |  |  |
| 32   | 1 1⁄4 | 133.3   | 4 %      | 98.4       | 3 1/8                | 4  | 19.0    | 3⁄4    | 15.9 | 5/8  |  |  |
| 40   | 1 1⁄2 | 155.6   | 5        | 114.3      | 4 ½                  | 4  | 22.2    | 7⁄8    | 19.0 | 3⁄4  |  |  |
| 50   | 2     | 165.1   | 6        | 127.0      | 5                    | 8  | 19.0    | 3⁄4    | 15.9 | 5%   |  |  |
| 65   | 2 1/2 | 190.5   | 7        | 149.2      | 5 %                  | 8  | 22.2    | 7∕8    | 19.0 | 3⁄4  |  |  |
| 80   | 3     | 209.5   | 7 ½      | 168.3      | 6 %                  | 8  | 22.2    | 7⁄8    | 19.0 | 3⁄4  |  |  |
| 100  | 4     | 254.0   | 9        | 200.0      | 7 ½                  | 8  | 22.2    | 7∕8    | 19.0 | 3⁄4  |  |  |
| 125  | 5     | 279.4   | 10       | 234.9      | 9 1⁄4                | 8  | 22.2    | 7∕8    | 19.0 | 3⁄4  |  |  |
| 150  | 6     | 317.5   | 11       | 269.9      | 10 %                 | 12 | 22.2    | 7∕8    | 19.0 | 3⁄4  |  |  |
| 200  | 8     | 381.0   | 13 ½     | 330.2      | 13                   | 12 | 25.4    | 1      | 22.2 | 7/8  |  |  |
| 250  | 10    | 444.5   | 16       | 387.3      | 15 ¼                 | 16 | 28.6    | 1 1/8  | 25.4 | 1    |  |  |
| 300  | 12    | 520.7   | 19       | 450.8      | 17 ¾                 | 16 | 31.7    | 1 1⁄4  | 28.6 | 1 ½  |  |  |

(HYDRA®)

Flange as per USA standard ANSI B 16.5

#### **Connection dimensions Class 400**



- D Outside diameter
- K Hole circle diameter
- L Bolt hole diameter

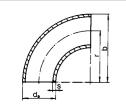
|      | ninal |         | F        | lange       | 1          |               |                 | Bolts |        |       |
|------|-------|---------|----------|-------------|------------|---------------|-----------------|-------|--------|-------|
| dian | neter | Outside | diameter | Hole circle | e diameter | Quan-<br>tity | - Hole diameter |       | Thread |       |
| D    | N     | D       |          |             | <          | -             |                 | L     | -      |       |
| -    | Inch  | mm      | Inch     | mm          | mm Inch    |               | mm              | Inch  | mm     | Inch  |
| 15   | 1/2   | 95.2    | 3 ¾      | 66.7        | 2 %        | 4             | 15.9            | 5%    | 12.7   | 1/2   |
| 20   | 3⁄4   | 117.5   | 4 %      | 82.5        | 3 1⁄4      | 4             | 19.0            | 3⁄4   | 15.9   | 5%    |
| 25   | 1     | 123.8   | 4 1/8    | 88.9        | 3 ½        | 4             | 19.0            | 3⁄4   | 15.9   | 5%    |
| 32   | 1 1⁄4 | 133.3   | 5 1⁄4    | 98.4        | 3 1/8      | 4             | 19.0            | 3⁄4   | 15.9   | 5%    |
| 40   | 1 1/2 | 155.6   | 6 1/8    | 114.3       | 4 ½        | 4             | 22.2            | 7/8   | 19.0   | 3⁄4   |
| 50   | 2     | 165.1   | 6 ½      | 127.0       | 5          | 8             | 19.0            | 3⁄4   | 15.9   | 5%    |
| 65   | 2 1/2 | 190.5   | 7 ½      | 149.2       | 5 %        | 8             | 22.2            | 7∕8   | 19.0   | 3⁄4   |
| 80   | 3     | 209.5   | 8 1⁄4    | 168.3       | 6 %        | 8             | 22.2            | 7/8   | 19.0   | 3⁄4   |
| 100  | 4     | 254.0   | 10       | 200.0       | 7 %        | 8             | 25.4            | 1     | 22.2   | 7∕8   |
| 125  | 5     | 279.4   | 11       | 234.9       | 9 1⁄4      | 8             | 25.4            | 1     | 22.2   | 7∕8   |
| 150  | 6     | 317.5   | 12 ½     | 269.9       | 10 %       | 12            | 25.4            | 1     | 22.2   | 7∕8   |
| 200  | 8     | 381.0   | 15       | 330.2       | 13         | 12            | 28.6            | 1 ½   | 25.4   | 1     |
| 250  | 10    | 444.5   | 17 ½     | 387.3       | 15 ¼       | 16            | 31.7            | 1 1⁄4 | 28.6   | 1 ½   |
| 300  | 12    | 520.7   | 20 ½     | 450.8       | 17 ¾       | 16            | 34.9            | 1 %   | 31.7   | 1 1⁄4 |

#### 7.1 Pipes, flanges, pipe bends, threads

Flange as per USA standard ANSI B 16.5

#### **Connecting dimensions class 600**




- D Outside diameter
- K Hole circle diameter
- L Bolt hole diameter

| Nominal<br>diameter |       |                  | F     | lange      |            | Bolts         |      |       |              |       |  |
|---------------------|-------|------------------|-------|------------|------------|---------------|------|-------|--------------|-------|--|
| dian                | neter | Outside diameter |       | Hole circl | e diameter | Quan-<br>tity |      |       | neter Thread |       |  |
| D                   | N     | D                |       | I          | K          | -             |      | Ĺ     | -            |       |  |
| -                   | Inch  | mm               | Inch  | mm         | Inch       | -             | mm   | Inch  | mm           | Inch  |  |
| 15                  | 1/2   | 95.2             | 3 ¾   | 66.7       | 2 %        | 4             | 15.9 | 5⁄8   | 12.7         | 1/2   |  |
| 20                  | 3/4   | 117.5            | 4 %   | 82.5       | 3 1⁄4      | 4             | 19.0 | 3⁄4   | 15.9         | 5%    |  |
| 25                  | 1     | 123.8            | 4 %   | 88.9       | 3 ½        | 4             | 19.0 | 3⁄4   | 15.9         | 5%    |  |
| 32                  | 1 1⁄4 | 133.3            | 5 1⁄4 | 98.4       | 3 1/8      | 4             | 19.0 | 3⁄4   | 15.9         | 5%    |  |
| 40                  | 1 1⁄2 | 155.6            | 6 ½   | 114.3      | 4 ½        | 4             | 22.2 | 7⁄8   | 19.0         | 3⁄4   |  |
| 50                  | 2     | 165.1            | 6 ½   | 127.0      | 5          | 8             | 19.0 | 3⁄4   | 15.9         | 5%    |  |
| 65                  | 2 1/2 | 190.5            | 7 ½   | 149.2      | 5 %        | 8             | 22.2 | 7∕8   | 19.0         | 3⁄4   |  |
| 80                  | 3     | 209.5            | 8 1⁄4 | 168.3      | 6 %        | 8             | 22.2 | 7⁄8   | 19.0         | 3/4   |  |
| 100                 | 4     | 273.0            | 10 ¾  | 215.9      | 8 ½        | 8             | 25.4 | 1     | 22.2         | 7∕8   |  |
| 125                 | 5     | 330.2            | 13    | 266.7      | 10 ½       | 8             | 28.6 | 1 1/8 | 25.4         | 1     |  |
| 150                 | 6     | 355.6            | 14    | 292.1      | 11 ½       | 12            | 28.6 | 1 1/8 | 25.4         | 1     |  |
| 200                 | 8     | 419.1            | 16 ½  | 349.2      | 13 ¾       | 12            | 31.7 | 1 1/4 | 28.6         | 1 ½   |  |
| 250                 | 10    | 508.0            | 20    | 431.8      | 17         | 16            | 34.9 | 1 ¾   | 31.7         | 1 1⁄4 |  |
| 300                 | 12    | 558.8            | 22    | 488.9      | 19 ¼       | 20            | 34.9 | 1 ¾   | 31.7         | 1 1⁄4 |  |

(HYDRA®)

Pipe bend 90° DIN 2605, part 1, version 1991-02 (extract)

#### Dimensions

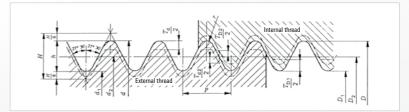


| No-<br>minal<br>dia-<br>meter | Outside<br>diameter | Wall thickness |      | e 2:<br>0 x d <sub>a</sub> | Туре 3:<br>r ~ 1.5 x d <sub>a</sub> |     |  |
|-------------------------------|---------------------|----------------|------|----------------------------|-------------------------------------|-----|--|
| DN                            | d <sub>a</sub>      | S              | r b  |                            | r                                   | b   |  |
| -                             | mm                  | mm             | mm   | mm                         | mm                                  | mm  |  |
| 15                            | 21.3                | 2              | 17.5 | 28                         | 28                                  | 38  |  |
| 20                            | 26.9                | 2.3            | 25   | 39                         | 29                                  | 43  |  |
| 25                            | 33.7                | 2.6            | 25   | 42                         | 38                                  | 56  |  |
| 32                            | 42.4                | 2.6            | 32   | 53                         | 48                                  | 69  |  |
| 40                            | 48.3                | 2.6            | 38   | 62                         | 57                                  | 82  |  |
| 50                            | 60.3                | 2.9            | 51   | 81                         | 76                                  | 106 |  |
| 65                            | 76.1                | 2.9            | 63   | 102                        | 95                                  | 133 |  |
| 80                            | 88.9                | 3.2            | 76   | 121                        | 114                                 | 159 |  |
| 100                           | 114.3               | 3.6            | 102  | 159                        | 152                                 | 210 |  |
| 125                           | 139.7               | 4.0            | 127  | 197                        | 190                                 | 260 |  |
| 150                           | 168.3               | 4.5            | 152  | 237                        | 229                                 | 313 |  |
| 200                           | 219.1               | 6.3            | 203  | 313                        | 305                                 | 414 |  |
| 250                           | 273                 | 6.3            | 254  | 391                        | 381                                 | 518 |  |
| 300                           | 323.9               | 7.1            | 305  | 467                        | 457                                 | 619 |  |

The wall thickness s conforms with the nominal diameter DN 300 of the normal wall thickness (row 1) according to DIN EN 10220 or DIN EN ISO 1127

#### 7.1 Pipes, flanges, pipe bends, threads

Pipe thread for joints not sealing in the thread DIN EN ISO 228-1, version 2003-05 (extract)


#### Application

This international standard sets out the description, dimensions and tolerances of pipe threads for connections that do not fit flush in the thread.

Examples for the complete thread description for a thread of rated size 1 1/2

| Inside thread   | (only one tolerance class) | Pipe thread DIN EN ISO 228-G 1 ½     |
|-----------------|----------------------------|--------------------------------------|
| External thread | Tolerance class A          | Pipe thread DIN EN ISO 228-G 1 ½ A   |
|                 | Tolerance class B          | Pipe thread DIN EN ISO 228/1-G 1 ½ B |

#### Thread profile and tolerance fields





Pipe thread for joints not sealing in the thread DIN EN ISO 228-1

#### Thread dimensions

|             |                                  |       |                    |                     | Diameter          |               |
|-------------|----------------------------------|-------|--------------------|---------------------|-------------------|---------------|
| Thread size | Threads<br>per inch<br>(25.4 mm) | Pitch | Depth of<br>thread | Outside<br>diameter | Pitch<br>diameter | Core diameter |
| -           | -                                | Р     | h                  | d = D               | $d_2 = D_2$       | $d_1 = D_1$   |
| -           | mm                               | mm    | mm                 | mm                  | mm                | mm            |
| 1⁄16        | 28                               | 0.907 | 0.581              | 7.723               | 7.142             | 6.561         |
| 1/8         | 28                               | 0.907 | 0.581              | 9.728               | 9.147             | 8.566         |
| 1⁄4         | 19                               | 1.337 | 0.856              | 13.157              | 12.301            | 11.445        |
| 3/8         | 19                               | 1.337 | 0.856              | 16.662              | 15.806            | 14.95         |
| 1/2         | 14                               | 1.814 | 1.162              | 20.955              | 19.793            | 18.631        |
| 5/8         | 14                               | 1.814 | 1.162              | 22.911              | 21.749            | 20.587        |
| 3⁄4         | 14                               | 1.814 | 1.162              | 26.441              | 25.279            | 24.117        |
| 7/8         | 14                               | 1.814 | 1.162              | 30.201              | 29.039            | 27.877        |
| 1           | 11                               | 2.309 | 1.479              | 33.249              | 31.77             | 30.291        |
|             | 11                               | 2.309 | 1.479              | 37.897              | 36.418            | 34.939        |
| 1 ¼         | 11                               | 2.309 | 1.479              | 41.91               | 40.431            | 38.952        |
| 1 ½         | 11                               | 2.309 | 1.479              | 47.803              | 46.324            | 44.845        |
| 1 ¾         | 11                               | 2.309 | 1.479              | 53.746              | 52.267            | 50.788        |
| 2           | 11                               | 2.309 | 1.479              | 59.614              | 58.135            | 56.656        |
| 2 1⁄4       | 11                               | 2.309 | 1.479              | 65.71               | 64.231            | 62.752        |
| 2 1/2       | 11                               | 2.309 | 1.479              | 75.184              | 73.705            | 72.226        |
| 2 ¾         | 11                               | 2.309 | 1.479              | 81.534              | 80.055            | 78.576        |
| 3           | 11                               | 2.309 | 1.479              | 87.884              | 86.405            | 84.926        |
| 3 ½         | 11                               | 2.309 | 1.479              | 100.33              | 98.851            | 97.372        |
| 4           | 11                               | 2.309 | 1.479              | 113.030             | 111.551           | 110.072       |
| 4 1/2       | 11                               | 2.309 | 1.479              | 125.73              | 124.251           | 122.772       |
| 5           | 11                               | 2.309 | 1.479              | 138.43              | 136.951           | 135.472       |
| 5 ½         | 11                               | 2.309 | 1.479              | 151.13              | 149.651           | 148.172       |
| 6           | 11                               | 2.309 | 1.479              | 163.83              | 162.351           | 160.872       |

Pipe thread for joints not sealing in the thread DIN EN ISO 228-1

#### Tolerances

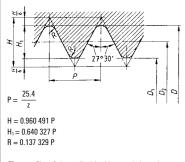
| Thread size |           | Tolerance            | s for pitch c        | liameter 1)      |                   |           | ices for<br>ameter    |           | ices for<br>diameter  |
|-------------|-----------|----------------------|----------------------|------------------|-------------------|-----------|-----------------------|-----------|-----------------------|
|             | Inside th | read T <sub>D2</sub> | Exte                 | ernal thread     | I T <sub>d2</sub> | Inside th | rread T <sub>D1</sub> | External  | thread T <sub>d</sub> |
|             | Lower     | Upper                | Lower                | Lower            | Upper             | Lower     | Upper                 | Lower     | Upper                 |
|             | tolerance | tolerance            | limit of             | tolerance        | tolerance         | tolerance | tolerance             | tolerance | tolerance             |
|             | limit     | limit                | tolerance<br>class A | limit<br>class B | limit             | limit     | limit                 | limit     | limit                 |
| -           | mm        | mm                   | mm                   | mm               | mm                | mm        | mm                    | mm        | mm                    |
| 1⁄16        | 0         | + 0.107              | - 0.107              | - 0.214          | 0                 | 0         | + 0.282               | - 0.214   | 0                     |
| 1/8         | 0         | + 0.107              | - 0.107              | - 0.214          | 0                 | 0         | + 0.282               | - 0.214   | 0                     |
| 1⁄4         | 0         | + 0.125              | - 0.125              | - 0.25           | 0                 | 0         | + 0.445               | - 0.25    | 0                     |
| ⅔           | 0         | + 0.125              | - 0.125              | - 0.25           | 0                 | 0         | + 0.445               | - 0.25    | 0                     |
| 1/2         | 0         | + 0.142              | - 0.142              | - 0.284          | 0                 | 0         | + 0.541               | - 0.284   | 0                     |
| 5/8         | 0         | + 0.142              | - 0.142              | - 0.284          | 0                 | 0         | + 0.541               | - 0.284   | 0                     |
| 3/4         | 0         | + 0.142              | - 0.142              | - 0.284          | 0                 | 0         | + 0.541               | - 0.284   | 0                     |
| 7/8         | 0         | + 0.142              | - 0.142              | - 0.284          | 0                 | 0         | + 0.541               | - 0.284   | 0                     |
| 1           | 0         | + 0.18               | - 0.18               | - 0.36           | 0                 | 0         | + 0.64                | - 0.36    | 0                     |
| 1 1⁄8       | 0         | + 0.18               | - 0.18               | - 0.36           | 0                 | 0         | + 0.64                | - 0.36    | 0                     |
| 1 1/4       | 0         | + 0.18               | - 0.18               | - 0.36           | 0                 | 0         | + 0.64                | - 0.36    | 0                     |
| 1 ½         | 0         | + 0.18               | - 0.18               | - 0.36           | 0                 | 0         | + 0.64                | - 0.36    | 0                     |
| 1 ¾         | 0         | + 0.18               | - 0.18               | - 0.36           | 0                 | 0         | + 0.64                | - 0.36    | 0                     |
| 2           | 0         | + 0.18               | - 0.18               | - 0.36           | 0                 | 0         | + 0.64                | - 0.36    | 0                     |
| 2 1⁄4       | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 2 ½         | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 2 ¾         | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 3           | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 3 ½         | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 4           | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 4 ½         | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 5           | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 5 ½         | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |
| 6           | 0         | + 0.217              | - 0.217              | - 0.434          | 0                 | 0         | + 0.64                | - 0.434   | 0                     |

<sup>1</sup>) With thin-walled parts, to assess the dimensional stability, that thread diameter must be used as a base which results from the arithmetical average of two diameter measurements taken at 90° apart.

(HYDRA®)

(HYDRA)

Pipe thread for joints sealing in the thread DIN EN 10226-1, version 2004-10 (extract), ISO 7-1, version 1994 (extract)

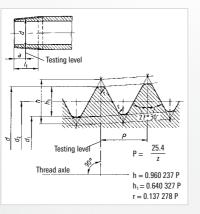

#### Thread profile and tolerance fields

#### Application

This standard applies to connections for cylindrical female threads to fittings, threaded flanges etc. to tapered male threads.

If necessary, a suitable sealant may be used in the thread to ensure a tight connection.

## Cylindrical female thread (Designation Rp)




The profile of the cylindrical internal thread matches the one according to DIN EN ISO 228-1.

#### Description of a

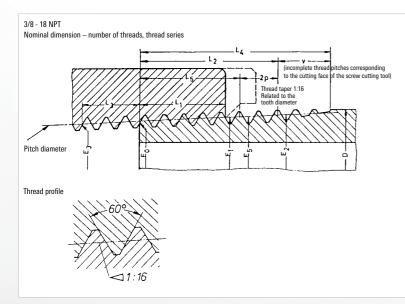
- Conical right-hand thread with pipe male thread of rated size <sup>1</sup>/<sub>2</sub> pipe thread DIN EN 10226 R <sup>1</sup>/<sub>2</sub>
- Cylindrical pipe female thread of rated size <sup>1</sup>/<sub>2</sub> pipe thread DIN EN 10226 R <sup>1</sup>/<sub>2</sub>

## Tapered male thread (Designation R)



#### 7.1 Pipes, flanges, pipe bends, threads

Pipe thread for joints sealing in the thread DIN EN 10226-1


#### **Rated dimension**

|   | Design<br>External<br>thread | nation<br>Inside<br>thread | No-<br>minal<br>diame-<br>ter of<br>pipes | Position<br>of<br>reference<br>plane | Outside<br>diameter | Pitch<br>diameter | Core<br>diameter | Pitch | Threads<br>per inch<br>(25.4 mm) | Depth<br>of<br>threaded | Roun-<br>ding<br>ap-<br>prox. | Effective<br>thread<br>length |
|---|------------------------------|----------------------------|-------------------------------------------|--------------------------------------|---------------------|-------------------|------------------|-------|----------------------------------|-------------------------|-------------------------------|-------------------------------|
| İ | -                            | -                          | -                                         | а                                    | d = D               | $d_2 = D_2$       | $d_1 = D_1$      | Р     | Z                                | $h_1 = H_1$             | r = R                         | I <sub>1</sub>                |
|   | -                            | -                          | mm                                        | mm                                   | mm                  | mm                | mm               | grd   | -                                | -                       | -                             | mm                            |
| Ī | R 1/16                       | Rp 1/16                    | 3                                         | 4.0                                  | 7.723               | 7.142             | 6.561            | 0.907 | 28                               | 0.581                   | 0.125                         | 6.5                           |
|   | R ⅓                          | Rp ½                       | 6                                         | 4.0                                  | 9.728               | 9.147             | 8.566            | 0.907 | 28                               | 0.581                   | 0.125                         | 6.5                           |
|   | R ¼                          | Rp ¼                       | 8                                         | 6.0                                  | 13.157              | 12.301            | 11.445           | 1.337 | 19                               | 0.856                   | 0.184                         | 9.7                           |
|   | R ⅔                          | Rp ⅔                       | 10                                        | 6.4                                  | 16.662              | 15.806            | 14.95            | 1.337 | 19                               | 0.856                   | 0.184                         | 10.1                          |
|   | R ½                          | Rp ½                       | 15                                        | 8.2                                  | 20.955              | 19.793            | 18.631           | 1.814 | 14                               | 1.162                   | 0.249                         | 13.2                          |
|   | R ¾                          | Rp ¾                       | 20                                        | 9.5                                  | 26.441              | 25.279            | 24.117           | 1.814 | 14                               | 1.162                   | 0.249                         | 14.5                          |
|   | R 1                          | Rp 1                       | 25                                        | 10.4                                 | 33.249              | 31.77             | 30.291           | 2.309 | 11                               | 1.479                   | 0.317                         | 16.8                          |
|   | R 1 ¼                        | Rp 1 ¼                     | 32                                        | 12.7                                 | 41.91               | 40.431            | 38.952           | 2.309 | 11                               | 1.479                   | 0.317                         | 19.1                          |
|   | R 1 ½                        | Rp 1 ½                     | 40                                        | 12.7                                 | 47.803              | 46.324            | 44.845           | 2.309 | 11                               | 1.479                   | 0.317                         | 19.1                          |
|   | R 2                          | Rp 2                       | 50                                        | 15.9                                 | 59.614              | 58.135            | 56.656           | 2.309 | 11                               | 1.479                   | 0.317                         | 23.4                          |
|   | R 2 ½                        | Rp 2 ½                     | 65                                        | 17.5                                 | 75.184              | 73.705            | 72.226           | 2.309 | 11                               | 1.479                   | 0.317                         | 26.7                          |
|   | R 3                          | Rp 3                       | 80                                        | 20.6                                 | 87.884              | 86.405            | 84.926           | 2.309 | 11                               | 1.479                   | 0.317                         | 29.8                          |
|   | R 4                          | Rp 4                       | 100                                       | 25.4                                 | 113.030             | 111.551           | 110.072          | 2.309 | 11                               | 1.479                   | 0.317                         | 35.8                          |
|   | R 5                          | Rp 5                       | 125                                       | 28.6                                 | 138.43              | 136.951           | 135.472          | 2.309 | 11                               | 1.479                   | 0.317                         | 40.1                          |
|   | R 6                          | Rp 6                       | 150                                       | 28.6                                 | 163.83              | 162.351           | 160.872          | 2.309 | 11                               | 1.479                   | 0.317                         | 40.1                          |



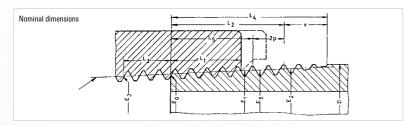
USA standard: tapered pipe thread NPT ANSI B1.20.1, version 1983 (extract)

#### Sample designations



#### 7.1 Pipes, flanges, pipe bends, threads

USA standard: tapered pipe thread NPT ANSI B1.20.1


#### **Rated dimension**

| Rated size     | Pipe outside | Number            | Pitch | Thread                       | Effective male thread |         |                |
|----------------|--------------|-------------------|-------|------------------------------|-----------------------|---------|----------------|
| of the<br>pipe | diameter     | of threads<br>per |       | diameter at<br>start of male | Length                |         | Diameter       |
|                |              | 1 inch            |       | thread                       |                       | Threads |                |
| -              | D            | n                 | Р     | E <sub>0</sub>               | L <sub>2</sub>        | -       | E <sub>2</sub> |
| Inch           | mm           | -                 | grd   | mm                           | mm                    | -       | mm             |
| 1⁄16           | 7.938        | 27                | 0.941 | 6.888                        | 6.632                 | 7.05    | 7.3025         |
| 1/8            | 10.287       | 27                | 0.941 | 9.2332                       | 6.703                 | 7.12    | 9.652          |
| 1⁄4            | 13.716       | 18                | 1.411 | 12.1257                      | 10.206                | 7.23    | 12.7635        |
| 3/8            | 17.145       | 18                | 1.411 | 15.5451                      | 10.358                | 7.34    | 16.1925        |
| 1/2            | 21.336       | 14                | 1.814 | 19.2641                      | 13.556                | 7.47    | 20.1115        |
| 3⁄4            | 26.67        | 14                | 1.814 | 24.5791                      | 13.861                | 7.64    | 25.4455        |
| 1              | 33.401       | 11 ½              | 2.209 | 30.8262                      | 17.343                | 7.85    | 31.91          |
| 1 1⁄4          | 42.164       | 11 ½              | 2.209 | 39.5511                      | 17.953                | 8.13    | 40.673         |
| 1 ½            | 48.26        | 11 ½              | 2.209 | 45.6207                      | 18.377                | 8.32    | 46.769         |
| 2              | 60.325       | 11 ½              | 2.209 | 57.6331                      | 19.215                | 8.70    | 58.834         |
| 2 ½            | 73.025       | 8                 | 3.175 | 69.0761                      | 28.892                | 9.10    | 70.8817        |
| 3              | 88.90        | 8                 | 3.175 | 84.8517                      | 30.48                 | 9.60    | 86.7567        |
| 3 ½            | 101.60       | 8                 | 3.175 | 97.4725                      | 31.75                 | 10.00   | 99.4567        |
| 4              | 114.30       | 8                 | 3.175 | 110.0933                     | 33.020                | 10.40   | 112.1567       |
| 5              | 141.30       | 8                 | 3.175 | 136.9245                     | 35.72                 | 11.25   | 139.1569       |
| 6              | 168.275      | 8                 | 3.175 | 163.9245                     | 38.418                | 12.10   | 166.1317       |
| 8              | 219.075      | 8                 | 3.175 | 214.2132                     | 43.498                | 13.70   | 216.9317       |
| 10             | 273.050      | 8                 | 3.175 | 267.8509                     | 48.895                | 15.40   | 270.9067       |
| 12             | 323.85       | 8                 | 3.175 | 318.3334                     | 53.975                | 17.00   | 321.7067       |

(HYDRA®)

# 7.1 Pipes, flanges, pipe bends, threads

USA standard: tapered pipe thread NPT ANSI B1.20.1



| Rated size<br>of the<br>pipe |                | ngagement by<br>and |                | ngagement wi<br>ng for female | th mechanical<br>threads | Thread | Thread runout |  |  |
|------------------------------|----------------|---------------------|----------------|-------------------------------|--------------------------|--------|---------------|--|--|
|                              | Length         | Diameter            | Length         | Threads                       | Diameter                 |        | Threads       |  |  |
| -                            | L <sub>1</sub> | E1                  | L <sub>3</sub> | -                             | E <sub>3</sub>           | v      | -             |  |  |
| Inch                         | mm             | mm                  | mm             | -                             | mm                       | mm     | -             |  |  |
| 1⁄16                         | 4.064          | 7.142               | 2.822          | 3                             | 6.7117                   | 3.264  | 3.47          |  |  |
| 1/8                          | 4.102          | 9.4894              | 2.822          | 3                             | 9.0566                   | 3.264  | 3.47          |  |  |
| 1/4                          | 5.786          | 12.4867             | 4.234          | 3                             | 11.861                   | 4.897  | 3.47          |  |  |
| 3/8                          | 6.096          | 15.9261             | 4.234          | 3                             | 15.2806                  | 4.897  | 3.47          |  |  |
| 1/2                          | 8.128          | 19.7721             | 5.443          | 3                             | 18.924                   | 6.294  | 3.47          |  |  |
| 3/4                          | 8.611          | 25.1173             | 5.443          | 3                             | 24.239                   | 6.294  | 3.47          |  |  |
| 1                            | 10.16          | 31.4612             | 6.627          | 3                             | 30.4122                  | 7.663  | 3.47          |  |  |
| 1 ¼                          | 10.668         | 40.2179             | 6.627          | 3                             | 39.1371                  | 7.663  | 3.47          |  |  |
| 1 ½                          | 10.668         | 46.2874             | 6.627          | 3                             | 45.2064                  | 7.663  | 3.47          |  |  |
| 2                            | 11.074         | 58.3253             | 6.627          | 3                             | 57.2191                  | 7.663  | 3.47          |  |  |
| 2 1/2                        | 17.323         | 70.1589             | 6.35           | 2                             | 68.6793                  | 11.016 | 3.47          |  |  |
| 3                            | 19.456         | 86.0679             | 6.35           | 2                             | 84.455                   | 11.016 | 3.47          |  |  |
| 3 ½                          | 20.853         | 98.7758             | 6.35           | 2                             | 97.0758                  | 11.016 | 3.47          |  |  |
| 4                            | 21.438         | 111.4328            | 6.35           | 2                             | 109.6962                 | 11.016 | 3.47          |  |  |
| 5                            | 23.80          | 138.412             | 6.35           | 2                             | 136.5278                 | 11.016 | 3.47          |  |  |
| 6                            | 24.333         | 165.2516            | 6.35           | 2                             | 163.3339                 | 11.016 | 3.47          |  |  |
| 8                            | 27.00          | 215.9008            | 6.35           | 2                             | 213.8164                 | 11.016 | 3.47          |  |  |
| 10                           | 30.734         | 269.7719            | 6.35           | 2                             | 267.4541                 | 11.016 | 3.47          |  |  |
| 12                           | 34.544         | 320.4924            | 6.35           | 2                             | 317.9366                 | 11.016 | 3.47          |  |  |

# 7.1 Pipes, flanges, pipe bends, threads

USA standard: tapered pipe thread NPT ANSI B1.20.1

| Rated size<br>of the<br>pipe | Total length<br>of the male<br>thread |                | d length of the fully<br>cut-out thread | Depth of<br>thread | Diameter<br>increase per<br>thread | Core diameter<br>bore width at<br>pipe end |
|------------------------------|---------------------------------------|----------------|-----------------------------------------|--------------------|------------------------------------|--------------------------------------------|
|                              |                                       | Length         | Screw thread diameter                   |                    |                                    |                                            |
| -                            | L <sub>4</sub>                        | L <sub>5</sub> | E <sub>5</sub>                          | h                  | 0.0625<br>n                        | Ko                                         |
| Inch                         | grd                                   | mm             | mm                                      | mm                 | -                                  | mm                                         |
| 1⁄16                         | 9.896                                 | 4.75           | 7.1849                                  | 0.753              | 0.059                              | 6.137                                      |
| 1/8                          | 9.967                                 | 4.821          | 9.5344                                  | 0.753              | 0.059                              | 8.481                                      |
| 1⁄4                          | 15.103                                | 7.384          | 12.5872                                 | 1.129              | 0.088                              | 10.996                                     |
| 3%8                          | 15.255                                | 7.536          | 16.0162                                 | 1.129              | 0.088                              | 14.417                                     |
| 1/2                          | 19.85                                 | 9.929          | 19.8846                                 | 1.451              | 0.113                              | 17.813                                     |
| 3⁄4                          | 20.155                                | 10.234         | 25.2186                                 | 1.451              | 0.113                              | 23.127                                     |
| 1                            | 25.006                                | 12.924         | 31.6339                                 | 1.767              | 0.138                              | 29.060                                     |
| 1 1/4                        | 25.616                                | 13.536         | 40.3969                                 | 1.767              | 0.138                              | 37.785                                     |
| 1 ½                          | 26.040                                | 13.96          | 46.4929                                 | 1.767              | 0.138                              | 43.853                                     |
| 2                            | 26.878                                | 14.798         | 58.5579                                 | 1.767              | 0.138                              | 55.867                                     |
| 2 ½                          | 39.908                                | 22.524         | 70.485                                  | 2.54               | 0.198                              | 66.535                                     |
| 3                            | 41.496                                | 24.13          | 86.36                                   | 2.54               | 0.198                              | 82.311                                     |
| 3 ½                          | 42.766                                | 25.40          | 99.06                                   | 2.54               | 0.198                              | 94.932                                     |
| 4                            | 44.036                                | 26.67          | 111.76                                  | 2.54               | 0.198                              | 107.554                                    |
| 5                            | 46.736                                | 29.37          | 138.7602                                | 2.54               | 0.198                              | 134.384                                    |
| 6                            | 49.433                                | 32.068         | 165.735                                 | 2.54               | 0.198                              | 161.191                                    |
| 8                            | 54.513                                | 37.148         | 216.535                                 | 2.54               | 0.198                              | 211.673                                    |
| 10                           | 59.911                                | 42.545         | 270.51                                  | 2.54               | 0.198                              | 265.311                                    |
| 12                           | 64.991                                | 47.625         | 321.31                                  | 2.54               | 0.198                              | 315.793                                    |

1301uk/8/05/20/pdf

(HYDRA®)

(HYDRA)

1301uk/8/05/20/pdf

| Material<br>group                       | Material no.<br>to<br>DIN EN 10 027 | Short name<br>to<br>DIN EN 10 027 | Short name<br>to<br>DIN<br>(old) | Semi-finished<br>product | Documentation  | Documentation<br>old | Upper<br>temp.<br>limit °C |
|-----------------------------------------|-------------------------------------|-----------------------------------|----------------------------------|--------------------------|----------------|----------------------|----------------------------|
| Unalloyed                               | 1.0254                              | P235TR1                           | St 37.0                          | Welded tube              | DIN EN 10217-1 | DIN 1626             | 300                        |
| steel                                   | Seamless tube                       |                                   | DIN EN 10216-1                   | DIN 1629                 |                |                      |                            |
|                                         | 1.0255                              | P235TR2                           | St 37.4                          | Welded tube              | DIN EN 10217-1 |                      |                            |
|                                         |                                     |                                   |                                  | Seamless tube            | DIN EN 10216-1 |                      |                            |
|                                         | 1.0427                              | C22G1                             | C 22.3                           | Flanges                  | VdTÜV-W 364    |                      | 350                        |
| Common                                  | 1.0038                              | S235JRG2                          | RSt 37-2                         | Steel bar, flat          | DIN EN 10025   |                      | 300                        |
| structural<br>steel                     | 1.0050                              | E295                              | St 50-2                          | products, wire rod,      |                |                      |                            |
|                                         | 1.0570                              | S355J2G3                          | St 52-3                          | profiles                 | AD W1          |                      |                            |
| Heat<br>resistant<br>unalloyed<br>steel | 1.0460                              | C22G2                             | C 22.8                           | Flanges                  | VdTÜVW 350     |                      | 450                        |
| Heat                                    | 1.0345                              | P235GH                            | HI                               | Sheet                    | DIN EN 10028   | DIN 17155            | 480                        |
| resistant<br>steel                      |                                     |                                   |                                  | Seamless tube            | DIN EN 10216   |                      | 450                        |
| 31001                                   | 1.0425                              | P265GH                            | HII                              | Sheet                    | DIN EN 10028   | DIN 17155            | 480                        |
|                                         | 1.0481                              | P295GH                            | 17 Mn 4                          | Sheet                    | DIN EN 10028   | DIN 17155            | 500                        |
|                                         |                                     |                                   |                                  | Seamless tube            | DIN 17175      |                      |                            |
|                                         | 1.5415                              | 16Mo3                             | 15 Mo 3                          | Sheet                    | DIN EN 10028   | DIN 17155            | 530                        |
|                                         |                                     |                                   |                                  | Seamless tube            | DIN 17175      |                      |                            |
|                                         | 1.7335                              | 13CrMo4-5                         | 13CrMo4-4                        | Sheet                    | DIN EN 10028   | DIN 17155            | 570                        |
|                                         |                                     |                                   |                                  | Seamless tube            | DIN 17175      |                      |                            |
|                                         | 1.7380                              | 10CrMo9-10                        | 10 CrMo 9 10                     | Sheet                    | DIN EN 10028   | DIN 17155            | 600                        |
|                                         |                                     |                                   |                                  | Seamless tube            | DIN 17175      |                      |                            |
|                                         | 1.0305                              | P235G1TH                          | St 35.8                          | Seamless tube            | DIN 17175      |                      | 480                        |
| Fine-grained<br>structural<br>steel     |                                     |                                   |                                  |                          |                |                      |                            |
| Standard                                | 1.0562                              | P355N                             | StE 355                          | Sheet                    | DIN EN 10028   | DIN 17102            |                            |
| heat resist.                            | 1.0565                              | P355NH                            | WStE 355                         | Strip                    |                |                      | 400                        |
| cold resist.                            | 1.0566                              | P355NL1                           | TStE 355                         | Steel bar                |                |                      | (-50) <sup>1)</sup>        |
| special                                 | 1.1106                              | P355NL2                           | EStE 355                         |                          |                |                      | (-60) <sup>1)</sup>        |

1) Cold resistant limit

#### 7.2 Material datasheets

#### Strength values at room temperature (RT)

(guaranteed values <sup>1)</sup>)

| Material no.        | Yield point                   | Tensile strength        | Breaking elon       | gation, min.        | Notched bar                                                     | Remarks                       |
|---------------------|-------------------------------|-------------------------|---------------------|---------------------|-----------------------------------------------------------------|-------------------------------|
| to<br>DIN EN 10 027 | min. R <sub>eH</sub><br>N/mm² | R <sub>m</sub><br>N/mm² | А <sub>5</sub><br>% | A_80<br>%           | impact strength<br>min. A <sub>v</sub> (KV <sup>2)</sup> )<br>J |                               |
| 1.0254              | 235                           | 360-500                 | 23                  |                     |                                                                 | s ≤ 16                        |
| 1.0255              | 235                           | 360-500                 | 23                  |                     | at 0 °C: 27                                                     | s ≤ 16                        |
| 1.0427              | 240                           | 410-540                 | 20 (transverse)     |                     | at RT: 31                                                       | s ≤ 70                        |
| 1.0038              | 235                           | 340-470                 | 21-26 <sup>1)</sup> | 17-21 <sup>3)</sup> | at RT: 27                                                       | 3 ≤ s ≤ 100 (R <sub>m</sub> ) |
| 1.0050              | 295                           | 470-610                 | 16-20 <sup>1)</sup> | 12-16 <sup>3)</sup> |                                                                 | 10 ≤ s ≤ 150 (KV)             |
| 1.0570              | 355                           | 490-630                 | 18-22 <sup>1)</sup> | 14-18 <sup>3)</sup> | at -20 °C: 27                                                   | s < 16 (R <sub>eH</sub> )     |
| 1.0460              | 240                           | 410-540                 | 20                  |                     | at RT: 31                                                       | s ≤ 70                        |
| 1.0345              | 235                           | 360-480                 | 25                  |                     | at 0 °C: 27                                                     | s ≤ 16                        |
|                     | 235                           | 360-500                 | 23                  |                     | at 0 °C: 27                                                     | s ≤ 16                        |
| 1.0425              | 265                           | 410-530                 | 23                  |                     | at 0 °C: 27                                                     | s ≤ 16                        |
| 1.0481              | 295<br>270                    | 460-580                 | 22                  |                     | at 0 °C: 27                                                     | s ≤ 16                        |
| 1.5415              | 275 270                       | 440-590                 | 24                  |                     | at RT: 31                                                       | s ≤ 16                        |
| 1.7335              | 300<br>290                    | 440-600                 | 20                  |                     | at RT: 31                                                       | s ≤ 16                        |
| 1.7380              | 310<br>280                    | 480-630                 | 18                  |                     | at RT: 31                                                       | s ≤16                         |
| 1.0305              | 235                           | 360-480                 | 23                  |                     | at RT: 34                                                       | s ≤ 16                        |
| 1.0562              | 355                           | 490-630                 | 22                  |                     | at 0 °C: 47                                                     | s ≤ 16                        |
| 1.0565              |                               |                         |                     |                     | at 0 °C: 47                                                     | s ≤ 16                        |
| 1.0566              |                               |                         |                     |                     | at 0 °C: 55                                                     | s ≤ 16                        |
| 1.1106              |                               |                         |                     |                     | at 0 °C: 90                                                     | s ≤ 16                        |

1) Smallest value of longitudinal or transverse test

2) New designation to DIN EN 10045; average of 3 specimens in DIN EN standards3) Dependent on product thickness

(HYDRA)

| Material<br>group     | Material no.<br>to<br>DIN EN 10 027 | Short name<br>to<br>DIN EN 10 027 | Semi-finished<br>product | Documentation  | Documentation<br>old | Upper<br>temp.<br>limit °C |
|-----------------------|-------------------------------------|-----------------------------------|--------------------------|----------------|----------------------|----------------------------|
| Stainless             | 1.4511                              | X3CrNb17                          | Strip                    | DIN EN 10088   | DIN 17441 2)         | 200                        |
| ferritic steel        |                                     |                                   |                          | VdTÜV-W422     |                      | as per VdTÜV               |
|                       | 1.4512                              | X2CrTi12                          | Strip                    | DIN EN 10088   |                      | 350                        |
|                       |                                     |                                   |                          | SEW 400        |                      |                            |
| Stainless             | 1.4301                              | X5CrNi18-10                       | Strip                    | DIN EN 10088   | DIN 17441/97         | 550 / 300 <sup>1)</sup>    |
| austenitic<br>steel   |                                     |                                   | Strip Sheet              |                | DIN 17440/96         |                            |
| 31001                 | 1.4306                              | X2CrNi19-11                       | Strip                    | DIN EN 10088   | DIN 17441/97         | 550 / 350 <sup>1)</sup>    |
|                       |                                     |                                   | Strip Sheet              |                | DIN 17440/96         |                            |
|                       | 1.4541                              | X6CrNiTi18-10                     | Strip                    | DIN EN 10088   | DIN 17441/97         | 550 / 400 <sup>1)</sup>    |
|                       |                                     |                                   | Strip Sheet              |                | DIN 17440/96         |                            |
|                       | 1.4571                              | X6CrNiMoTi17-12-2                 | Strip                    | DIN EN 10088   | DIN 17441/97         | 550 / 400 <sup>1)</sup>    |
|                       |                                     |                                   | Strip Sheet              |                | DIN 17440/96         |                            |
|                       | 1.4404                              | X2CrNiMo17-12-2                   | Strip                    | DIN EN 10088   | DIN 17441/97         | 550 / 400 <sup>1)</sup>    |
|                       |                                     |                                   | Strip Sheet              |                | DIN 17440/96         |                            |
|                       | 1.4435                              | X2CrNiMo18-14-3                   | Strip                    | DIN EN 10088   | DIN 17441/97         | 550 / 400 <sup>1)</sup>    |
|                       |                                     |                                   | Strip Sheet              |                | DIN 17440/96         |                            |
|                       | 1.4565                              | X2CrNiMnMoNbN25-18-5-4            | Strip, Strip Sheet       | SEW 400 / 97   | SEW 400 / 91         | 550 / 400 <sup>1)</sup>    |
|                       | 1.4539                              | X1NiCrMoCu25-20-5                 | Strip Sheet, Strip       | DIN EN 10088   |                      | 550 / 400 <sup>1)</sup>    |
|                       |                                     |                                   | Seamless tube            | VdTÜV-W421     |                      | 400                        |
|                       | 1.4529                              | X1NiCrMoCuN25-20-7                | Strip Sheet, Strip       | DIN EN 10088   |                      | 400                        |
|                       |                                     |                                   | Seamless tube            |                |                      |                            |
|                       |                                     |                                   |                          | VdTÜV-W 502    |                      |                            |
| Austenitic            | 1.4948                              | X6CrNi18-10                       | Strip Sheet              | DIN EN 10028-7 | DIN 17460            | 600                        |
| steel of<br>high heat |                                     |                                   | strip Forgin             | DIN EN 10222-5 | DIN 17460            | 600                        |
| resistance            |                                     |                                   | Seamless tube            | DIN 17459      |                      | 600                        |
|                       | 1.4919                              | X6CrNiMo17-13                     | Sheet, strip, bar        | DIN 17460      |                      | 600                        |
|                       |                                     |                                   | Forging                  |                |                      |                            |
|                       |                                     |                                   | Seamless tube            | DIN 17459      |                      | 600                        |
|                       | 1.4958                              | X5NiCrAlTi31-20                   | Sheet, strip, bar        | DIN 17460      |                      | 600                        |
|                       |                                     |                                   | Forging                  |                |                      |                            |
|                       |                                     |                                   | Seamless tube            | DIN 17459      |                      | 600                        |

1) Temperature limit where risk of intercrystalline corrosion 2) Earlier standard DIN 17441 7/85

# 7.2 Material datasheets

#### Strength values at room temperature (RT)

(guaranteed values <sup>3)</sup>)

| Material no.<br>to<br>DIN EN 10 027 |   | Yield po<br>R <sub>p0,2</sub><br>N/mm² | ints min.<br>R <sub>p1,0</sub><br>N/mm² | Tensile strength<br>R <sub>m</sub><br>N/mm² | Breaking eld<br>> 3 mm<br>thickness A <sub>5</sub><br>% | ngation, min.<br>< 3 mm<br>thickness A <sub>80</sub><br>% | Notched bar<br>impact strength<br>> 10 mm thickness,<br>transverse min. KV in J | Remarks |
|-------------------------------------|---|----------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|---------|
| 1.4511                              |   | 230                                    |                                         | 420-600                                     |                                                         | 23                                                        |                                                                                 | s ≤ 6   |
| 1.4512                              |   | 210                                    |                                         | 380-560                                     |                                                         | 25                                                        |                                                                                 | s ≤ 6   |
| 1.4301                              | t | 230                                    | 260                                     | 540-750                                     | 45                                                      | 45                                                        | at RT: 60                                                                       | s ≤ 6   |
|                                     | I | 215                                    | 245                                     |                                             | 43                                                      | 40                                                        |                                                                                 |         |
| 1.4306                              | t | 220                                    | 250                                     | 520-670                                     | 45                                                      | 45                                                        | at RT: 60                                                                       | s ≤ 6   |
|                                     | Ι | 205                                    | 235                                     |                                             | 43                                                      | 40                                                        |                                                                                 |         |
| 1.4541                              | t | 220                                    | 250                                     | 520-720                                     | 40                                                      | 40                                                        | at RT: 60                                                                       | s ≤ 6   |
|                                     | I | 205                                    | 235                                     |                                             | 38                                                      | 35                                                        |                                                                                 |         |
| 1.4571                              | t | 240                                    | 270                                     | 540-690                                     | 40                                                      | 40                                                        | at RT: 60                                                                       | s ≤ 6   |
|                                     | I | 225                                    | 255                                     |                                             | 38                                                      | 35                                                        |                                                                                 |         |
| 1.4404                              | t | 240                                    | 270                                     | 530-680                                     | 40                                                      | 40                                                        | at RT: 60                                                                       | S ≤ 6   |
|                                     | I | 225                                    | 255                                     |                                             | 38                                                      | 35                                                        |                                                                                 |         |
| 1.4435                              | t | 240                                    | 270                                     | 550-700                                     | 40                                                      | 40                                                        | at RT: 60                                                                       | S ≤ 6   |
|                                     | I | 225                                    | 255                                     | 1                                           | 38                                                      | 35                                                        |                                                                                 |         |
| 1.4565                              | t | 420                                    | 460                                     | 800-1000                                    | 30                                                      | 25                                                        | at RT: 55                                                                       | s ≤ 30  |
| 1.4539                              | t | 240                                    | 270                                     | 530-730                                     | 35                                                      | 35                                                        | at RT: 60                                                                       | S ≤ 6   |
|                                     | Ι | 225                                    | 255                                     |                                             | 33                                                      | 30                                                        |                                                                                 |         |
|                                     |   | 220                                    | 250                                     | 520-720                                     | 40                                                      | 40                                                        |                                                                                 |         |
| 1.4529                              | t | 300                                    | 340                                     | 650-850                                     | 40                                                      | 40                                                        | at RT: 60                                                                       |         |
|                                     | Ι | 285                                    | 325                                     |                                             | 38                                                      | 35                                                        |                                                                                 | s ≤ 75  |
|                                     |   | 300                                    | 340                                     | 600-800                                     | 40                                                      | 40                                                        | at RT: 84                                                                       |         |
| 1.4948                              | t | 230                                    | 260                                     | 530-740                                     | 45                                                      | 45                                                        | at RT: 60                                                                       | s ≤ 6   |
|                                     | t | 195                                    | 230                                     | 490-690                                     | 35                                                      |                                                           | at RT: 60                                                                       | s ≤ 250 |
|                                     | t | 185                                    | 225                                     | 500-700                                     | 30                                                      |                                                           | at RT: 60                                                                       |         |
| 1.4919                              |   | 205                                    | 245                                     | 490-690                                     | 35                                                      | 30                                                        | at RT: 60                                                                       |         |
|                                     |   | 205                                    | 245                                     | 490-690                                     | 30                                                      |                                                           | at RT: 60                                                                       |         |
| 1.4958                              |   | 170                                    | 200                                     | 500-750                                     | 35                                                      | 30                                                        | at RT: 80                                                                       |         |
|                                     |   | 170                                    | 200                                     | 500-750                                     | 35                                                      |                                                           | at RT: 80                                                                       | s ≤ 50  |

1) Smallest value of longitudinal or transverse test, q = tensile test, transverse, l = tensile test, longitudinal

(HYDRA®)

| Material<br>group          | Material no.<br>to<br>DIN EN 10 027 1) | Short name<br>to<br>DIN EN 10 027 | Trade name      | Semi-finished<br>product | Documentation            | Upper<br>temp.<br>limit °C |
|----------------------------|----------------------------------------|-----------------------------------|-----------------|--------------------------|--------------------------|----------------------------|
| Heat<br>resistant<br>steel | 1.4828                                 | X15CrNiSi20-12                    |                 | Strip Sheet, Strip,      | DIN EN 10095<br>(SEW470) | 900                        |
| steel                      | 1.4876                                 | X10NiCrAlTi32-21                  | INCOLOY 800     | Strip Sheet, Strip       | SEW470                   |                            |
|                            |                                        |                                   |                 | all                      | VdTÜV-W412               | 600                        |
|                            |                                        | X10NiCrAITi32-21 H                | INCOLOY 800 H   | Strip Sheet, Strip       | VdTÜV-W434               | 950                        |
|                            |                                        |                                   |                 | all                      | DIN EN 10095             | 900                        |
| Nickel-                    | 2.4858                                 | NICr21Mo                          | INCOLOY 825     | all                      | DIN 17750/02             |                            |
| based<br>alloys            |                                        |                                   |                 | Strip Sheet, Strip       | VdTüV-W432               | 450                        |
| anoys                      |                                        |                                   |                 |                          | DIN 17744 2)             |                            |
|                            | 2.4816                                 | NiCR15Fe                          | INCONEL 600     |                          | DIN EN 10095             | 1000                       |
|                            |                                        |                                   |                 | Strip Sheet, Strip       | DIN 17750/02             |                            |
|                            |                                        |                                   | INCONEL 600 H   |                          | VdTÜV-W305               | 450                        |
|                            |                                        |                                   |                 |                          | DIN 17742 2)             |                            |
|                            | 2.4819                                 | NiMo16Cr15W                       | HASTELLOY C-276 | Strip Sheet, Strip       | DIN 17750/02             |                            |
|                            |                                        |                                   |                 |                          | VdTÜV-W400               | 450                        |
|                            |                                        |                                   |                 |                          | DIN 17744 2)             |                            |
|                            | 2.4856                                 | NiCr22Mo9Nb                       | INCONEL 625     | Flat products            | DIN EN 10095             | 900                        |
|                            |                                        |                                   |                 | Strip Sheet, Strip       | DIN 17750/02             | 450                        |
|                            |                                        |                                   | INCONEL 625 H   |                          | (VdTÜV-W499)             |                            |
|                            |                                        |                                   |                 |                          | DIN 17744 2)             |                            |
|                            | 2.4610                                 | NiMo16Cr16Ti                      |                 | Strip Sheet, Strip       | DIN 17750/02             |                            |
|                            |                                        |                                   | HASTELLOY-C4    | Strip Sheet, Strip       | VdTÜV-W424               | 400                        |
|                            |                                        |                                   |                 |                          | DIN 17744 2)             |                            |
|                            | 2.4360                                 | NiCu30Fe                          | MONEL           | Strip, Strip Sheet       | DIN 17750/02             |                            |
|                            |                                        |                                   |                 |                          | VdTÜV-W 263              | 425                        |
|                            |                                        |                                   |                 | Seamless tube            |                          |                            |
|                            |                                        |                                   |                 | Forging                  | DIN 17743 2)             |                            |

1) In the case of nickel-based alloys, DIN 17007 governs the material number

2) Chemical composition

# 7.2 Material datasheets

#### Strength values at room temperature (RT)

(guaranteed values <sup>3)</sup>)

| Material no.           |                                        |                            | Tensile strength        | Breaking elo        | ngation, min.     |                                 | Remarks                              |
|------------------------|----------------------------------------|----------------------------|-------------------------|---------------------|-------------------|---------------------------------|--------------------------------------|
| to<br>DIN EN 10 027 1) | R <sub>p0,2</sub><br>N/mm <sup>2</sup> | R <sub>p1,0</sub><br>N/mm² | R <sub>m</sub><br>N/mm² | А <sub>5</sub><br>% | A <sub>80</sub> % | impact strength<br>min. KV<br>J |                                      |
| 1.4828                 | 230                                    | 270                        | 500-750                 |                     |                   |                                 | s ≤ 3 mm                             |
|                        |                                        |                            |                         |                     |                   |                                 | solution annealed                    |
| 1.4876                 | 170                                    | 210                        | 450-680                 | 22                  |                   |                                 | Soft annealed                        |
| INCOLOY 800            | 210                                    | 240                        | 500-750                 | 30                  |                   | at RT: 150 4)                   |                                      |
| (1.4876 H)             | 170                                    | 200                        | 450 -700                | 30                  |                   |                                 | solution annealed (AT)               |
| INCOLOY 800H           | 170                                    | 210                        | 450-680                 |                     | 28                |                                 |                                      |
| 2.4858                 | 240                                    | 270                        | ≥ 550                   | 30                  |                   |                                 | Soft annealed                        |
| INCOLOY 825            | 235                                    | 265                        | 550-750                 |                     |                   | at RT: 80                       | s ≤ 30 mm                            |
| 2.4816                 | 240                                    |                            | 500-850                 |                     |                   |                                 | Annealed (+A)                        |
|                        | 180                                    | 210                        | ≥ 550                   |                     | 28                |                                 | solution annealed (F50)              |
| INCONEL 600            | 200                                    | 230                        | 550-750                 | 30                  |                   | at RT: 150 4)                   | Soft annealed                        |
| INCONEL 600 H          | 180                                    | 210                        | 500-700                 | 35                  | 30                | at RT: 150 4)                   | solution annealed                    |
| 2.4819                 | 310                                    | 330                        | ≥ 690                   | 30                  |                   |                                 | s ≤ 5 mm, solution anne-             |
| HASTELLOY C-276        | 310                                    | 330                        | 730-1000                | 30                  | 30                | at RT: 96                       | aled (F69)                           |
|                        |                                        |                            |                         |                     | 30                |                                 |                                      |
| 2.4856                 | 415                                    |                            | 820-1050                |                     |                   |                                 | $s \le 3 \text{ mm}$ , Annealed (+A) |
| INCONEL 625 H          | 275                                    | 305                        | ≥ 690                   |                     |                   | at RT: 100                      | solution annealed (F69)              |
| INCONEL 625            | 400                                    | 440                        | 830-1000                | 30                  |                   |                                 | s ≤ 3 mm; Soft annealed              |
| 2.4610                 | 305                                    | 340                        | ≥ 690                   | 40                  |                   | at RT: 96                       | s ≤ 5, solution annealed             |
| HASTELLOY-C4           | 280                                    | 315                        | 700-900                 | 40                  | 30                | at RT: 96                       | 5 < s ≤ 30                           |
|                        |                                        |                            |                         |                     | 30                |                                 |                                      |
| 2.4360                 | 175                                    | 205                        | ≥ 450                   | 30                  |                   |                                 | s ≤ 50, Soft annealed                |
| MONEL                  | 175                                    |                            | 450-600                 | 30                  |                   | at RT: 120                      | Soft annealed                        |
|                        |                                        |                            |                         |                     |                   |                                 |                                      |
|                        |                                        |                            |                         |                     |                   |                                 |                                      |

3) Smallest value of longitudinal or transverse test
4) Value a<sub>k</sub> in J/cm<sup>2</sup>



| Material           |                    |                         | designatio      |                           | Semi-               | Documentation | Documen-      | Upper             |
|--------------------|--------------------|-------------------------|-----------------|---------------------------|---------------------|---------------|---------------|-------------------|
| group              | DIN EN 1<br>Number | 652 (new)<br>Short name | DIN 1<br>Number | 17670 (old)<br>Short name | finished<br>product |               | tation<br>old | temp.<br>limit °C |
| Copper-            | CW354H             | CuNi30Mn1Fe             | 2.0882          | CuNi30Mn1Fe               | Strip,              | DIN-EN 1652   | DIN 17664     | 350               |
| based alloy        |                    |                         |                 | CUNIFER 30 1)             | Strip Sheet         | AD-W 6/2      | DIN 17670     |                   |
| Copper             | CW024A             | Cu-DHP                  | 2.0090          | SF-Cu                     | Strip,              | DIN-EN 1652   | DIN 1787      | 250               |
|                    |                    |                         |                 |                           | Strip Sheet         | AD-W 6/2      | DIN 17670     |                   |
| Copper-tin         | CW452K             | CuSn6                   | 2.1020          | CuSn6                     | Strip,              | DIN-EN 1652   | DIN 17662     |                   |
| alloy              |                    |                         |                 | Bronze                    | Strip Sheet         |               | DIN 17670     |                   |
| Copper-zinc-       | CW503L             | CuZn20                  | 2.0250          | CuZn 20                   | Strip,              | DIN-EN 1652   | DIN 17660     |                   |
| alloy              |                    |                         |                 |                           | Strip Sheet         |               | DIN 17670     |                   |
|                    | CW508L             | CuZn37                  | 2.0321          | CuZn 37                   | Strip,              | DIN-EN 1652   | DIN 17660     |                   |
|                    |                    |                         |                 | Brass                     | Strip Sheet         |               | DIN 17670     |                   |
|                    |                    |                         | 2.0402          | CuZn40Pb2                 | Strip,              | DIN 17670     |               |                   |
|                    |                    |                         |                 |                           | Strip Sheet         | DIN 17660     |               |                   |
|                    | DIN EN             | 485-2 (new)             | DIN 17          | 45-1 (old)                | Semi-               | Documentation | Documen-      | Upper             |
|                    | Number             | Short name              | Number          | Short name                | finished            |               | tation        | temp.             |
|                    |                    |                         |                 |                           | product             |               | old           | limit °C          |
| Wrought            | EN AW-5754         | EN AW-Al Mg3            | 3.3535          | AIMg 3                    | Strip,              | DIN EN 485-2  | DIN 1745      |                   |
| aluminium<br>alloy |                    |                         |                 |                           | Strip Sheet         | DIN EN 575-3  | DIN 1725      |                   |
|                    |                    |                         |                 |                           |                     | AD-W 6/1      |               |                   |
|                    | EN AW-6082         | EN AW-AlSi1MgMn         | 3.2315          | AlMgSi 1                  | Strip,              | DIN-EN 485-2  | DIN 1745      | 150 (AD-W)        |
|                    |                    |                         |                 |                           | Strip Sheet         | DIN-EN 573-3  | DIN 1725      |                   |
| Pure nickel        | 2.4068             | LC-Ni 99                |                 | LC-Ni 99                  | Strip, Strip        | VdTÜV-W 345   |               | 600               |
| Titanium           | 3.7025             | Ti 1                    |                 | Ti 1                      | Sheet               | DIN 17 850    |               | 250               |
|                    |                    |                         |                 |                           | Strip,              | DIN 17 860    |               |                   |
|                    |                    |                         |                 |                           | Strip Sheet         | VdTÜV-W 230   |               |                   |
| Tantalum           |                    | Ta                      |                 | Ta                        | Strip,              | VdTÜV-W382    |               | 250               |
|                    |                    |                         |                 |                           | Strip Sheet         |               |               |                   |

1) Trade name

#### 7.2 Material datasheets

#### Strength values at room temperature (RT)

(guaranteed values <sup>2)</sup>)

| Material no. |                            | ints min.         |                         | Breaking elongation, min.           | Notched bar                     | Remarks                                 |
|--------------|----------------------------|-------------------|-------------------------|-------------------------------------|---------------------------------|-----------------------------------------|
|              | R <sub>p0.2</sub><br>N/mm² | N/mm <sup>2</sup> | R <sub>m</sub><br>N/mm² | А <sub>5</sub><br>%                 | impact strength<br>min. KV<br>J |                                         |
| CW354H       | ≥ 120                      |                   | 350-420                 | 35 <sup>6)</sup>                    |                                 | R350 (F35) <sup>4)</sup> 0.3 ≤ s ≤ 15   |
| 2.0882       |                            |                   |                         |                                     |                                 |                                         |
| CW024A       | ≤ 100                      |                   | 200-250                 | 42 <sup>6)</sup>                    |                                 | R200 (F20) 4) s > 5 mm                  |
| 2.0090       | ≤ 140                      |                   | 220-260                 | 33 <sup>7)</sup> / 42 <sup>6)</sup> |                                 | R220 (F22) 4) 0.2 ≤ s ≤ 5 mm            |
| CW452K       | ≤ 300                      |                   | 350-420                 | 45 7)                               |                                 | R350 (F35) 4 0.1 ≤ s ≤ 5 mm             |
| 2.1020       |                            |                   |                         | 55 <sup>6)</sup>                    |                                 |                                         |
| CW503L       | ≤ 150                      |                   | 270-320                 | 38 7)                               |                                 | R270 (F27) <sup>4)</sup> 0.2 ≤ s ≤ 5 mm |
| 2.0250       |                            |                   |                         | 48 <sup>6)</sup>                    |                                 |                                         |
| CW508L       | ≤ 180                      |                   | 300-370                 | 38 7)                               |                                 | R300 (F30) <sup>4)</sup> 0.2 ≤ s ≤ 5 mm |
| 2.0321       |                            |                   |                         | 48 <sup>6)</sup>                    |                                 |                                         |
| 2.0402       | ≤ 300                      |                   | ≥ 380                   | 35                                  |                                 | (F38) <sup>5)</sup> 0.3 ≤ s ≤ 5 mm      |
| Material no. | Yield po                   | ints min.         | Tensile strength        | Breaking elongation, min.           | Notched bar                     | Remarks                                 |
|              | R <sub>00.2</sub>          | R <sub>p1.0</sub> | Rm                      | A <sub>5</sub>                      | impact strength-<br>min, KV     |                                         |
|              | N/mm <sup>2</sup>          | N/mm <sup>2</sup> | N/mm <sup>2</sup>       | %                                   | J                               |                                         |
| EN AW-5754   | ≥ 80                       |                   | 190-240                 | 14 (A50)                            |                                 | 0.5 < s ≤ 1.5 mm                        |
| 3.3535       |                            |                   |                         |                                     |                                 | State: O / H111                         |
|              |                            |                   |                         |                                     |                                 | DIN EN values                           |
| EN AW-6082   | ≤ 85                       |                   | ≤ 150                   | 14 (A50)                            |                                 | 0.4 ≤ s ≤ 1.5 mm                        |
| 3.2315       |                            |                   |                         |                                     |                                 | State: O ; DIN EN values                |
| 2.4068       | ≥ 80                       | ≥ 105             | 340-540                 | 40                                  |                                 |                                         |
| 3.7025       | ≥ 180                      | ≥ 200             | 290-410                 | 30 / 24 8)                          | 62                              | 0.4 < s ≤ 8 mm                          |
| TANTAL - ES  | ≥ 140                      |                   | ≥ 225                   | 35 <sup>3)</sup>                    |                                 | 0.1 ≤s ≤ 5.0                            |
|              |                            |                   |                         |                                     |                                 | Electron beam melted                    |
|              |                            |                   |                         |                                     |                                 | Sintered in vacuum                      |
| TANTAL - GS  | ≥ 200                      |                   | ≥ 280                   | <b>30</b> <sup>3)</sup>             |                                 |                                         |

2) Smallest value of longitudinal or transverse test

3) Measured length lo = 25 mm

4) State designation to DIN EN 1652 or. (--) to DIN

5) To DIN, material not contained in the DIN EN

6) Specification in DIN EN for s > 2.5 mm
7) Breaking elongation A50, specification in DIN EN for s ≤ 2.5 mm
8) A50 for thickness ≤ 5 mm



# **Chemical composition**

(percentage by mass)

| Material<br>group         | Material<br>No. | Short name  | C <sup>1)</sup> | Si<br>Max. | Mn     | P<br>Max. | S<br>Max. | Cr     | Мо     | Ni     | Other<br>elements         |
|---------------------------|-----------------|-------------|-----------------|------------|--------|-----------|-----------|--------|--------|--------|---------------------------|
| Unalloyed                 | 1.0254          | P235TR1     | ≤ 0.16          | 0.35       | ≤ 1.20 | 0.025     | 0.020     | ≤ 0.30 | ≤ 0.08 | ≤ 0.30 | Cu ≤ 0.30                 |
| steel                     |                 |             |                 |            |        |           |           |        |        |        | Cr+Cu+Mo+Ni ≤ 0.70        |
|                           | 1.0255          | P235TR2     | ≤ 0.16          | 0.35       | ≤ 1.20 | 0.025     | 0.020     | ≤ 0.30 | ≤ 0.08 | ≤ 0.30 | Cu ≤ 0.30                 |
|                           |                 |             |                 |            |        |           |           |        |        |        | Cr+Cu+Mo+Ni ≤ 0.70        |
|                           |                 |             |                 |            |        |           |           |        |        |        | Al <sub>tot</sub> ≥ 0.02  |
|                           | 1.0427          | C22G1       | 0.18 -          | 0.15 -     | 0.40 - | 0.035     | 0.030     | ≤ 0.30 |        |        | $AI_{tot} \ge 0.015$      |
|                           |                 |             | 0.23            | 0.35       | 0.90   |           |           |        |        |        |                           |
| Common                    | 1.0038          | S235JRG2    | ≤ 0.17          |            | ≤ 1.40 | 0.045     | 0.045     |        |        |        | N ≤ 0.009                 |
| structural steel          | 1.0050          | E295        |                 |            |        | 0.045     | 0.045     |        |        |        | N ≤ 0.009                 |
|                           | 1.0570          | S355J2G3    | ≤ 0.20          | 0.55       | 1.60   | 0.035     | 0.035     |        |        |        | Al <sub>tot</sub> ≥ 0.015 |
| Heat resist.<br>unalloyed | 1.0460          | C22G2       | 0.18 -          | 0.15 -     | 0.40 - | 0.035     | 0.030     | ≤ 0.30 |        |        |                           |
| steel                     |                 |             | 0.23            | 0.35       | 0.90   |           |           |        |        |        |                           |
| Heat                      | 1.0345          | P235GH      | ≤ 0.16          | 0.35       | 0.40 - | 0.030     | 0.025     | ≤ 0.30 | ≤ 0.08 | ≤ 0.30 |                           |
| resistant<br>steel        |                 |             |                 |            | 1.20   |           |           |        |        |        | Nb,Ti,V                   |
| 01001                     | 1.0425          | P265GH      | ≤ 0.20          | 0.40       | 0.50   | 0.030     | 0.025     | ≤ 0.30 | ≤ 0.08 | ≤ 0.30 | Al <sub>tot</sub> ≥ 0.020 |
|                           |                 |             |                 |            |        |           |           |        |        |        | Cu ≤ 0.30                 |
|                           | 1.0481          | P295GH      | 0.08 -          | 0.40       | 0.90 - | 0.030     | 0.025     | ≤ 0.30 | ≤ 0.08 | ≤ 0.30 | Cr+Cu+Mo+Ni ≤ 0.70        |
|                           |                 |             | 0.20            |            | 1.50   |           |           |        |        |        |                           |
|                           | 1.5415          | 16Mo3       | 0.12 -          | 0.35       | 0.40 - | 0.030     | 0.025     | ≤ 0.30 | 0.25 - | ≤ 0.30 | Cu ≤ 0.3                  |
|                           |                 |             | 0.20            |            | 0.90   |           |           |        | 0.35   |        |                           |
|                           | 1.7335          | 13CrMo4-5   | 0.08 -          | 0.35       | 0.40 - | 0.030     | 0.025     | 0.70 - | 0.40 - |        | Cu ≤ 0.3                  |
|                           |                 |             | 0.18            |            | 1.00   |           |           | 1.15   | 0.60   |        |                           |
|                           | 1.7380          | 10 CrMo9-10 | 0.08 -          | 0.50       | 0.40 - | 0.030     | 0.025     | 2.00 - | 0.90 - |        | Cu ≤ 0.3                  |
|                           |                 |             | 0.14            |            | 0.80   |           |           | 2.50   | 1.10   |        |                           |
|                           | 1.0305          | P235G1TH    | ≤ 0.17          | 0.10 -     | 0.40 - | 0.040     | 0.040     |        |        |        |                           |
|                           |                 |             |                 | 0.35       | 0.80   |           |           |        |        |        |                           |

1) Carbon content dependent on thickness. Values are for a thickness of  $\leq$  16 mm.

# 7.2 Material datasheets

# **Chemical composition**

(percentage by mass)

| Material<br>group                | Material<br>No. | Designation               | C<br>Max. | Si<br>Max. | Mn           | P<br>Max. | S<br>Max. | Cr             | Мо           | Ni             | Other<br>elements                                 |
|----------------------------------|-----------------|---------------------------|-----------|------------|--------------|-----------|-----------|----------------|--------------|----------------|---------------------------------------------------|
| Fine-<br>grained<br>structural   | 1.0562          | P355N                     | 0.20      | 0.50       | 0.9 -<br>1.7 | 0.030     | 0.025     | ≤ 0.3          | ≤ 0.8        | ≤ 0.5          | Al <sub>tot</sub> ≥ 0.020 (see DIN<br>EN 10028-3) |
| steel                            | 1.0565          | P355NH                    | 0.20      | 0.50       | 0.9 -<br>1.7 | 0.030     | 0.025     | ≤ 0.3          | ≤ 0.8        | ≤ 0.5          | Cu, N, Nb, Ti, V                                  |
|                                  | 1.0566          | P355NL1                   | 0.18      | 0.50       | 0.9 -<br>1.7 | 0.030     | 0.020     | ≤ 0.3          | ≤ 0.8        | ≤ 0.5          | Nb +Ti +V ≤ 0.12                                  |
|                                  | 1.1106          | P355NL2                   | 0.18      | 0.50       | 0.9 -<br>1.7 | 0.025     | 0.015     | ≤ 0.3          | ≤ 0.8        | ≤ 0.5          |                                                   |
| Stainless<br>ferritic<br>steel   | 1.4511          | X3CrNb17                  | 0.05      | 1.00       | ≤ 1.0        | 0.040     | 0.015     | 16.0 -<br>18.0 |              |                | Nb: 12 x % C<br>-1.00                             |
| 31001                            | 1.4512          | X2CrTi12                  | 0.03      | 1.00       | ≤ 1.0        | 0.040     | 0.015     | 10.5 -<br>12.5 |              |                | Ti: 6 x (C+N) - 0.65                              |
| Stainless<br>austenitic<br>steel | 1.4301          | X5CrNi18-10               | 0.07      | 1.00       | ≤ 2.0        | 0.045     | 0.015     | 17.0 -<br>19.5 |              | 8.0 -<br>10.5  |                                                   |
| 31001                            | 1.4306          | X2CrNi19-11               | 0.03      | 1.00       | ≤ 2.0        | 0.045     | 0.015     | 18.0 -<br>20.0 |              | 10.0 -<br>12.0 |                                                   |
|                                  | 1.4541          | X6CrNiTi18-10             | 0.08      | 1.00       | ≤ 2.0        | 0.045     | 0.015     | 17.0 -<br>19.0 |              | 9.0 -<br>12.0  | Ti: 5 x % C - 0.7                                 |
|                                  | 1.4571          | X6CrNiMoTi<br>17 12 2     | 0.08      | 1.00       | ≤ 2.0        | 0.045     | 0.015     | 16.5 -<br>18.5 | 2.0 -<br>2.5 | 10.5 -<br>13.5 | Ti: 5 x % C - 0.7                                 |
|                                  | 1.4404          | X2CrNiMo<br>17 12 2       | 0.03      | 1.00       | ≤ 2.0        | 0.045     | 0.015     | 16.5 -<br>18.5 | 2.0 -<br>2.5 | 10.0 -<br>13.0 | N ≤ 0.11                                          |
|                                  | 1.4435          | X2CrNiMo<br>18 14 3       | 0.03      | 1.00       | ≤ 2.0        | 0.045     | 0.015     | 17.0 -<br>19.0 | 2.5 -<br>3.0 | 12.5 -<br>15.0 |                                                   |
|                                  | 1.4565          | X2CrNiMuMo<br>NbN2518-5-4 | 0.04      | 1.00       | 4.5 -<br>6.5 | 0.030     | 0.015     | 21.0 -<br>25.0 | 3.0 -<br>4.5 | 15.0 -<br>18.0 | Nb ≤ 0.30, N: 0.04<br>- 0.15                      |
|                                  | 1.4539          | X1NiCrMoCu<br>25-20-5     | 0.02      | 0.70       | ≤ 2.0        | 0.030     | 0.010     | 19.0 -<br>21.0 | 4.0 -<br>5.0 | 24.0 -<br>26.0 | Cu,<br>N: ≤ 0.15                                  |
|                                  | 1.4529          | X2NiCrMoCuN<br>25-20-7    | 0.02      | 0.50       | ≤1.0         | 0.030     | 0.010     | 19.0 -<br>21.0 | 6.0 -<br>7.0 | 24.0 -<br>26.0 | Cu: 0.5 - 1<br>N: 0.15 - 0.25                     |

**Chemical composition** 

Material

No.

1.4948

Short name

Trade name

X6CrNi18-10

С

0.04 -

0.08

Si Mn Ρ S Cr Мо Ni

≤ 1.00 ≤ 2.0

Max. Max.

0.035 0.015

17.0 -

19.0

(percentage by mass)

Material

Austenitic

steel of

group

8.0 -

11.0

Other

elements

| high heat          |                |                  | 0.08    |        |       |       |       | 19.0   |        | 11.0    |                    |
|--------------------|----------------|------------------|---------|--------|-------|-------|-------|--------|--------|---------|--------------------|
| resistance         | 1.4919         | X6CrNiMo 17-13   | 0.04 -  | ≤ 0.75 | ≤ 2.0 | 0.035 | 0.015 | 16.0 - | 2.0 -  | 12.0 -  |                    |
|                    |                |                  | 0.08    |        |       |       |       | 18.0   | 2.5    | 14.0    |                    |
| Heat               | 1.4828         | X15CrNiSi 20-12  | ≤ 0.20  | 1.50 - | ≤ 2.0 | 0.045 | 0.015 | 19.0 - |        | 11.0 -  | N: max 0.11        |
| resistant<br>steel |                |                  |         | 2.00   |       |       |       | 21.0   |        | 13.0    |                    |
|                    | 1.4876         | X10NiCrAlTi32-21 | ≤ 0.12  | ≤ 1.00 | ≤ 2.0 | 0.030 | 0.015 | 19.0 - |        | 30.0 -  | Al: 0.15 - 0.60    |
|                    | (DIN EN 10095) | INCOLOY 800H     |         |        |       |       |       | 23.0   |        | 34.0    | Ti: 0.15 - 0.60    |
| Nickel-based       | 2.4858         | NiCr21Mo         | ≤ 0.025 | ≤ 0.50 | ≤ 1.0 | 0.020 | 0.015 | 19.5 - | 2.5 -  | 38.0 -  | Ti, Cu, Al,        |
| alloy              |                | INCOLOY 825      |         |        |       |       |       | 23.5   | 3.5    | 46.0    | Co ≤ 1.0           |
|                    |                | NiCr15Fe         | 0.05 -  | ≤ 0.50 | ≤ 1.0 | 0.020 | 0.015 | 14.0 - |        | > 72    | Ti, Cu, Al         |
|                    | 2.4816         | INCONEL 600      | 0.10    |        |       |       |       | 17.0   |        |         |                    |
|                    |                | INCONEL 600 H    |         |        |       |       |       |        |        |         |                    |
|                    | 2.4819         | NiMo16Cr15W      | ≤ 0.01  | 0.08   | ≤ 1.0 | 0.020 | 0.015 | 14.5 - | 15.0 - | Re-     | V, Co, Cu, Fe      |
|                    |                | HASTELLOY C-276  |         |        |       |       |       | 16.5   | 17.0   | mainder |                    |
|                    |                | NiCr22Mo9Nb      | 0.03 -  | ≤ 0.50 | ≤ 0.5 | 0.020 | 0.015 | 20.0 - | 8.0 -  | > 58    | Ti, Cu, Al         |
|                    | 2.4856         | INCONEL 625      | 0.10    |        |       |       |       | 23.0   | 10.0   |         | Nb/Ta: 3.15 - 4.15 |
|                    |                | INCONEL 625 H    |         |        |       |       |       |        |        |         | Co ≤ 1.0           |
|                    | 2.4610         | NiMo16Cr16Ti     | ≤ 0.015 | ≤ 0.08 | ≤ 1.0 | 0.025 | 0.015 | 14.0 - | 14.0 - | Re-     | Ti, Cu,            |
|                    |                | HASTELLOY C4     |         |        |       |       |       | 18.0   | 17.0   | mainder | Co ≤ 2.0           |
|                    | 2.4360         | NiCu30Fe         | ≤ 0.15  | ≤ 0.50 | ≤ 2.0 |       | 0.020 |        |        | > 63    | Cu: 28 - 34%       |
|                    |                | MONEL            |         |        |       |       |       |        |        |         | Ti, Al, Co ≤ 1.0   |
| Copper-            | 2.0882         | CuNi 30 Mn1 Fe   | ≤ 0.05  |        | 0.5 - |       | 0.050 |        |        | 30.0 -  | Cu: residue,       |
| based<br>alloy     |                | CUNIFER 30       |         |        | 1.5   |       |       |        |        | 32.0    | Pb, Zn             |

# 7.2 Material datasheets

# **Chemical composition**

(percentage by mass)

| material<br>group  | Material<br>no. | Short name   | Cu      | AI      | Zn      | Sn    | Pb     | Ni     | Ti      | Ta   | Other<br>elements |
|--------------------|-----------------|--------------|---------|---------|---------|-------|--------|--------|---------|------|-------------------|
| Copper             | CW024A          | Cu DHP       | ≥ 99.9  |         |         |       |        |        |         |      | P: 0.015 - 0.04   |
|                    | (2.0090)        | (SF-Cu)      |         |         |         |       |        |        |         |      |                   |
| Copper-tin         | CW452K          | CuSn 6       | Rest    |         | ≤ 0,2   | 5.5 - | ≤ 0.20 | ≤ 0.2  |         |      | P: 0.01 - 0.4     |
| alloy              | (2.1020)        | Bronze       |         |         |         | 7.0   |        |        |         |      | Fe: ≤ 0.1         |
| Copper-zinc        | CW503L          | CuZn 20      | 79.0 -  | ≤ 0.02  | Re-     | ≤ 0.1 | ≤ 0.05 |        |         |      |                   |
| alloy              | 2.0250          |              | 81.0    |         | mainder |       |        |        |         |      |                   |
|                    | CW508L          | CuZn 37      | 62.0 -  | ≤ 0.05  | Re-     | ≤ 0.1 | ≤ 0.10 | ≤ 0.3  |         |      |                   |
|                    | (2.0321)        | Brass        | 64.0    |         | mainder |       |        |        |         |      |                   |
|                    | 2.0402          | CuZn 40 Pb 2 | 57.0 -  | ≤ 0.1   | Re-     | ≤ 0.3 | 1.50 - | ≤ 0.4  |         |      |                   |
|                    |                 |              | 59.0    |         | mainder |       | 2.50   |        |         |      |                   |
| Wrought            | EN AW-5754      | EN AW-AI     | ≤ 0.1   | Re-     | ≤ 0.1   |       |        |        | ≤ 0.15  |      | Si, Mn, Mg        |
| aluminium<br>alloy | (3.3535)        | Mg3          |         | mainder |         |       |        |        |         |      |                   |
| anoy               | EN AW-6082      | EN AW-AI     | ≤ 0.1   | Re-     | ≤ 0.2   |       |        |        | ≤ 0.1   |      | Si, Mn, Mg        |
|                    | (3.2315)        | Si1MgMn      |         | mainder |         |       |        |        |         |      |                   |
| Pure nickel        | 2.4068          | LC-Ni 99     | ≤ 0.025 |         |         |       |        | ≥ 99   | ≤ 0.1   |      | C ≤ 0.02          |
|                    |                 |              |         |         |         |       |        |        |         |      | Mg ≤ 0.15         |
|                    |                 |              |         |         |         |       |        |        |         |      | S ≤ 0.01          |
|                    |                 |              |         |         |         |       |        |        |         |      | Si ≤ 0.2          |
| Titanium           | 3.7025          | Ti           |         |         |         |       |        |        | Re-     |      | N ≤ 0.05          |
|                    |                 |              |         |         |         |       |        |        | mainder |      | H ≤ 0.013         |
|                    |                 |              |         |         |         |       |        |        |         |      | C ≤ 0.06          |
|                    |                 |              |         |         |         |       |        |        |         |      | Fe ≤ 0.15         |
| Tantalum           |                 | Ta           |         |         |         |       |        | ≤ 0.01 | ≤ 0.01  | Rem. |                   |



# Strength values at elevated temperatures

| Material no. |                         |                  |     |     |     |     |     | lues in |     |     |         |        |                |                   | _     |
|--------------|-------------------------|------------------|-----|-----|-----|-----|-----|---------|-----|-----|---------|--------|----------------|-------------------|-------|
| to DIN       | Type of value           |                  |     |     |     |     |     | s in °C |     |     |         |        |                |                   |       |
| 1.0254       | P                       | RT <sup>1)</sup> | 100 | 150 | 200 | 250 | 300 | 350     | 400 | 450 | 500     | 550    | 600            | 700               | 80    |
| 1.0254       | R <sub>p 0,2</sub>      | 235              |     |     |     |     |     |         |     |     |         |        | <u> </u>       |                   | -     |
|              | R <sub>p 0,2</sub>      | 235              |     |     |     |     |     |         |     |     |         |        |                |                   | -     |
| 1.0427       | R <sub>p 0,2</sub>      | 220              | 210 | 190 | 170 | 150 | 130 | 110     |     |     |         |        |                |                   |       |
| 1.0038       | R <sub>p 0.2</sub>      | 205              | 187 |     | 161 | 143 | 122 |         |     | (v  | alues t | o AD V | V1)            |                   |       |
| 1.0570       | R <sub>p 0.2</sub>      | 315              | 254 |     | 226 | 206 | 186 |         |     |     | 1       |        |                |                   |       |
| 1.0460       | R <sub>p 0,2</sub>      | 240              | 230 | 210 | 185 | 165 | 145 | 125     | 100 | 80  |         |        |                |                   |       |
|              | R <sub>p 1/10000</sub>  |                  |     |     |     |     |     |         | 136 | 80  | (53)    |        |                |                   |       |
|              | R <sub>p 1/100000</sub> |                  |     |     |     |     |     |         | 95  | 49  | (30)    | ()=    | value          | s at 48           | 0 °C  |
|              | R <sub>m 10000</sub>    |                  |     |     |     |     |     |         | 191 | 113 | (75)    |        |                |                   |       |
|              | R <sub>m 100000</sub>   |                  |     |     |     |     |     |         | 132 | 69  | (42)    |        |                |                   |       |
| 1.0345       | R <sub>p 0,2</sub>      | 206              | 190 | 180 | 170 | 150 | 130 | 120     | 110 |     |         |        |                |                   |       |
|              | R <sub>p 1/10000</sub>  |                  |     |     |     |     |     |         | 136 | 80  | (53)    |        |                |                   |       |
|              | R <sub>p 1/100000</sub> |                  |     |     |     |     |     |         | 95  | 49  | (30)    | ()=    | value          | s at 48           | 30 °C |
|              | R <sub>m 10000</sub>    |                  |     |     |     |     |     |         | 191 | 113 | (75)    |        |                |                   |       |
|              | R <sub>m 100000</sub>   |                  |     |     |     |     |     |         | 132 | 69  | (42)    |        |                |                   |       |
|              | R <sub>m 200000</sub>   |                  |     |     |     |     |     |         | 115 | 57  | (33)    |        |                |                   |       |
| 1.0425       | R <sub>p 0,2</sub>      | 234              | 215 | 205 | 195 | 175 | 155 | 140     | 130 |     | (00)    |        |                |                   |       |
|              | R <sub>p 1/10000</sub>  | 2.04             | 215 | 205 | 100 | 175 | 155 | 140     | 136 | 80  | (53)    |        |                |                   |       |
|              |                         |                  |     |     |     |     |     |         | 95  | 49  | (30)    | 0-     | voluo          | s at 48           | 00 00 |
|              | R <sub>p 1/100000</sub> |                  |     |     |     |     |     |         |     |     |         | ()=    | value          | S dl 40           | ,0 C  |
|              | R <sub>m 10000</sub>    |                  |     |     |     |     |     |         | 191 | 113 | (75)    |        |                |                   |       |
|              | R <sub>m 100000</sub>   |                  |     |     |     |     |     |         | 132 | 69  | (42)    |        |                |                   |       |
| 1.0481       | R <sub>m 200000</sub>   |                  |     |     |     |     |     |         | 115 | 57  | (33)    |        |                |                   |       |
| 1.0481       | R <sub>p 0,2</sub>      | 272              | 250 | 235 | 225 | 205 | 185 | 170     | 155 |     |         |        |                |                   |       |
|              | R <sub>p 1/10000</sub>  |                  |     |     |     |     |     |         | 167 | 93  | 49      |        |                |                   |       |
|              | R <sub>p 1/100000</sub> |                  |     |     |     |     |     |         | 118 | 59  | 29      |        |                |                   |       |
|              | R <sub>m 10000</sub>    |                  |     |     |     |     |     |         | 243 | 143 | 74      |        |                |                   |       |
|              | R <sub>m 100000</sub>   |                  |     |     |     |     |     |         | 179 | 85  | 41      |        |                |                   |       |
|              | R <sub>m 200000</sub>   |                  |     |     |     |     |     |         | 157 | 70  | 30      |        |                |                   |       |
| 1.5415       | R <sub>p 0,2</sub>      | 275              |     |     | 215 | 200 | 170 | 160     | 150 | 145 | 140     |        |                |                   |       |
|              | R <sub>p 1/10000</sub>  |                  |     |     |     |     |     |         |     | 216 | 132     | (84)   |                |                   |       |
|              | R <sub>p 1/100000</sub> |                  |     |     |     |     |     |         |     | 167 | 73      | (36)   | ():            | = value           | es at |
|              | R <sub>m 10000</sub>    |                  |     |     |     |     |     |         |     | 298 | 171     | (102)  |                | 530 °C            | 2     |
|              | R <sub>m 100000</sub>   |                  |     |     |     |     |     |         |     | 239 | 101     | (53)   |                |                   |       |
|              | R <sub>m 200000</sub>   |                  |     |     |     |     |     |         |     | 217 | 84      | (45)   |                |                   |       |
| 1.7335       | R <sub>p 0,2</sub>      |                  |     |     | 230 | 220 | 205 | 190     | 180 | 170 | 165     |        |                |                   |       |
|              | R <sub>p 1/10000</sub>  |                  |     |     |     |     |     |         |     | 245 | 157     | (53)   |                |                   |       |
|              | R <sub>p 1/10000</sub>  |                  |     |     |     |     |     |         |     | 191 | 98      | (24)   | <sub>Λ</sub> . | = value           | ae at |
|              | R <sub>m 10000</sub>    |                  |     |     |     |     |     |         |     | 370 | 239     | (24)   |                | = value<br>570 °C |       |
|              | -                       |                  |     |     |     |     |     |         |     |     |         |        |                | 570 °C            | ·     |
|              | R <sub>m 100000</sub>   |                  |     |     |     |     |     |         |     | 285 | 137     | (33)   |                |                   |       |
|              | R <sub>m 200000</sub>   |                  |     |     |     | 1   |     |         |     | 260 | 115     | (26)   |                |                   |       |

# 7.2 Material datasheets

#### Strength values at elevated temperatures

|                        |                                        |            |            | N          | lateria    | l stren    | gth va     | lues in    | N/mn       | 1 <sup>2</sup> |            |            |       |          |      |
|------------------------|----------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|-------|----------|------|
| Material no.<br>to DIN | Type of value                          |            |            |            |            | Tempe      | rature     | s in °C    |            |                |            |            |       |          |      |
|                        |                                        | RT1)       | 100        | 150        | 200        | 250        | 300        | 350        | 400        | 450            | 500        | 550        | 600   | 700      | 800  |
| 1.7380                 | R <sub>p 0,2</sub>                     |            |            |            | 245        | 230        | 220        | 210        | 200        | 190            | 180        |            |       |          |      |
|                        | R <sub>p 1/10000</sub>                 |            |            |            |            |            |            |            |            | 240            | 147        | 83         | 44    |          |      |
|                        | R <sub>p 1/100000</sub>                |            |            |            |            |            |            |            |            | 166            | 103        | 49         | 22    |          |      |
|                        | R <sub>m 10000</sub>                   |            |            |            |            |            |            |            |            | 306            | 196        | 108        | 61    |          |      |
|                        | R <sub>m 100000</sub>                  |            |            |            |            |            |            |            |            | 221            | 135        | 68         | 34    |          |      |
|                        | R <sub>m 200000</sub>                  |            |            |            |            |            |            |            |            | 201            | 120        | 58         | 28    |          |      |
| 1.0305                 | R <sub>p 0,2</sub>                     | 235        |            |            | 185        | 165        | 140        | 120        | 110        | 105            |            |            |       |          |      |
|                        | R <sub>p 1/10000</sub>                 |            |            |            |            |            |            |            | 136        | 80             | (53)       |            |       |          |      |
|                        | R <sub>p 1/100000</sub>                |            |            |            |            |            |            |            | 95         | 49             | (30)       | ()=        | value | s at 48  | 0°C  |
|                        | R <sub>m 10000</sub>                   |            |            |            |            |            |            |            | 191        | 113            | (75)       |            |       |          |      |
|                        | R <sub>m 100000</sub>                  |            |            |            |            |            |            |            | 132        | 69             | (42)       |            |       |          |      |
|                        | R <sub>m 200000</sub>                  |            |            |            |            |            |            |            | 115        | 57             | (33)       |            |       |          |      |
| 1.0565                 | R <sub>p 0.2</sub>                     | 336        | 304        | 284        | 245        | 226        | 216        | 196        | 167        |                |            |            |       |          |      |
| 1.4511                 | R <sub>p 0,2</sub>                     | 230        | 230        | 220        | 205        | 190        | 180        | 165        |            |                |            |            |       |          |      |
| 1.4512                 | R <sub>p.0.2</sub>                     | 210        | 200        | 195        | 190        | 186        | 180        | 160        |            |                |            |            |       |          |      |
| 1.4301                 | R <sub>p 0,2</sub>                     | 215        | 157        | 142        | 127        | 118        | 110        | 104        | 98         | 95             | 92         | 90         |       |          |      |
|                        | R <sub>p1</sub>                        |            | 191        | 172        | 157        | 145        | 135        | 129        | 125        | 122            | 120        | 120        |       |          |      |
|                        | R <sub>m 10000</sub>                   |            |            |            |            |            |            | (appr      | ox. va     | lues to        | DIN 1      | 7441)      | 122   | 48       | (17) |
|                        | R <sub>m 100000</sub>                  |            |            |            |            |            |            |            |            |                |            | -          | 74    | 23       | (5)  |
| 1.4306                 | R <sub>p 0,2</sub>                     | 205        | 147        | 132        | 118        | 108        | 100        | 94         | 89         | 85             | 81         | 80         |       |          |      |
|                        | R <sub>p1</sub>                        |            | 181        | 162        | 147        | 137        | 127        | 121        | 116        | 112            | 109        | 108        |       |          |      |
| 1.4541                 | R <sub>p 0,2</sub>                     | 205        | 176        | 167        | 157        | 147        | 136        | 130        | 125        | 121            | 119        | 118        |       |          |      |
|                        | R <sub>p1</sub>                        |            | 208        | 196        | 186        | 177        | 167        | 161        |            |                | 149        | 147        |       |          |      |
|                        | R <sub>m 10000</sub>                   |            |            |            |            |            |            | (appr      | ox. va     | lues to        | DIN 1      | 7441)      | 115   | 45       | (17) |
|                        | R <sub>m 100000</sub>                  |            |            |            |            |            |            |            |            |                |            |            | 65    | 22       | (8)  |
| 1.4571                 | R <sub>p 0,2</sub>                     | 225        | 185        | 177        | 167        | 157        | 145        | 140        | 135        | 131            | 129        | 127        |       |          |      |
| 1.440.4                | R <sub>p1</sub>                        |            | 218        | 206        | 196        | 186        | 175        | 169        | 164        | 160            | 158        | 157        |       |          |      |
| 1.4404                 | R <sub>p 0,2</sub>                     | 225        | 166        | 152        | 137        | 127        | 118        | 113        | 108        | 103            | 100        | 98         |       |          |      |
| 1.4435                 | R <sub>p1</sub>                        | 0.5-       | 199        | 181        | 167        | 157        | 145        | 139        | 135        | 130            | 128        | 127        |       |          |      |
| 1.4435                 | R <sub>p 0,2</sub>                     | 225        | 165        | 150        | 137        | 127        | 119        | 113        | 108        | 103            | 100        | 98         |       |          |      |
| 1.4565                 | R <sub>p1</sub>                        | 400        | 200        | 180        | 165        | 153        | 145        | 139        | 135        | 130            | 128        | 127        |       | <u> </u> |      |
| 1.4000                 | R <sub>p 0,2</sub>                     | 420        | 350        | 310        | 270        | 255        | 240        | 225        | 210        | 210            | 210        | 200        |       |          |      |
| 1.4539                 | R <sub>p1</sub>                        | 460<br>220 | 400<br>205 | 355        | 310<br>175 | 290        | 270        | 255        | 240<br>125 | 240            | 240        | 230<br>105 |       |          |      |
| 1.4000                 | R <sub>p 0,2</sub>                     | 220        | 205        | 190        | 205        | 160        | 145        | 135        |            | 115<br>145     | 110<br>140 | 1          |       |          |      |
|                        | R <sub>p1</sub>                        | 520        | 235<br>440 | 220<br>420 | 400        | 190<br>390 | 175<br>380 | 165<br>370 | 155<br>360 | 140            | 140        | 135        |       |          |      |
| 1.4529                 | R <sub>m (VdTŪV)</sub>                 | 300        | 440<br>230 | 420<br>210 | 400        |            | 380        | 370        | 360        |                |            |            |       |          |      |
| 1.4020                 | R <sub>p 0,2</sub><br>R <sub>p 1</sub> | 300        | 230        | 210        | 225        | 180<br>215 | 205        | 165        | 190        |                |            |            |       |          |      |
|                        | °p1                                    | 340        | 270        | 240        | 220        | 210        | 203        | 195        | 190        |                |            |            |       |          |      |

1) Room temperature values valid to 50 °C

|                        |                         |             |     |     | Μ   | lateria | stren | gth va | lues in | N/mm | 1 <sup>2</sup> |     |     |                                          |         |      |
|------------------------|-------------------------|-------------|-----|-----|-----|---------|-------|--------|---------|------|----------------|-----|-----|------------------------------------------|---------|------|
| Material no.<br>to DIN | Type of value           |             |     |     |     |         | Tempe | rature | s in °C |      |                |     |     |                                          |         |      |
| LO DIN                 | Type of value           | RT1)        | 100 | 150 | 200 | 250     | 300   | 350    | 400     | 450  | 500            | 550 | 600 | 700                                      | 800     | 900  |
| 1.4948                 | R <sub>p 0,2</sub>      | 230         | 157 | 142 | 127 | 117     | 108   | 103    | 98      | 93   | 88             | 83  | 78  |                                          |         |      |
|                        | R <sub>p1</sub>         | 260         | 191 | 172 | 157 | 147     | 137   | 132    | 127     | 122  | 118            | 113 | 108 |                                          |         |      |
|                        | R                       | 530         | 440 | 410 | 390 | 385     | 375   | 375    | 375     | 370  | 360            | 330 | 300 |                                          |         |      |
|                        | R <sub>p 1/10000</sub>  |             |     |     |     |         |       |        |         |      | 147            | 121 | 94  | 35                                       |         |      |
|                        | R <sub>p 1/100000</sub> |             |     |     |     |         |       |        |         |      | 114            | 96  | 74  | 22                                       |         |      |
|                        | R <sub>m 10000</sub>    |             |     |     |     |         |       |        |         |      | 250            | 191 | 132 | 55                                       |         |      |
|                        | R <sub>m 100000</sub>   |             |     |     |     |         |       |        |         |      | 192            | 140 | 89  | 28                                       |         |      |
|                        | R <sub>m 200000</sub>   |             |     |     |     |         |       |        |         |      | 176            | 125 | 78  | 22                                       |         |      |
| 1.4919                 | R <sub>p 0,2</sub>      | 205         | 177 |     | 147 |         | 127   |        | 118     |      | 108            | 103 | 98  |                                          |         |      |
|                        | R <sub>n1</sub>         | 245         | 211 |     | 177 |         | 157   |        | 147     |      | 137            | 132 | 128 |                                          |         |      |
|                        | R <sub>p 1/10000</sub>  |             |     |     |     |         |       |        |         |      |                | 180 | 125 | 46                                       |         |      |
|                        | R <sub>p 1/100000</sub> |             |     |     |     |         |       |        |         |      |                | 125 | 85  | 25                                       |         |      |
|                        | R <sub>m 10000</sub>    |             |     |     |     |         |       |        |         |      |                | 250 | 175 | 65                                       |         |      |
|                        | R <sub>m 100000</sub>   |             |     |     |     |         |       |        |         |      |                | 175 | 120 | 34                                       |         |      |
| 1.4828                 | R <sub>p 0,2</sub>      | 230         | 332 |     | 318 |         | 300   |        | 279     |      | 253            |     | 218 |                                          | nufacti |      |
| DIN EN 10095           | R <sub>m</sub>          | 550         | 653 |     | 632 |         | 600   |        | 550     |      | 489            |     | 421 | ·                                        | figures | 5)   |
|                        | R <sub>p 1/1000</sub>   |             |     |     |     |         |       |        |         |      |                |     | 120 | 50                                       | 20      | 8    |
|                        | R <sub>p 1/10000</sub>  |             |     |     |     |         |       |        |         |      |                |     | 80  | 25                                       | 10      | 4    |
|                        | R <sub>m 1000</sub>     |             |     |     |     |         |       |        |         |      |                |     | 190 | 75                                       | 35      | 15   |
|                        | R <sub>m 10000</sub>    |             |     |     |     |         |       |        |         |      |                |     | 120 | 36                                       | 18      | 8.5  |
|                        | R <sub>m 100000</sub>   |             |     |     |     |         |       |        |         |      |                |     | 65  | 16                                       | 7.5     | 3.0  |
| 1.4876                 | R <sub>p 0,2</sub>      | 170         | 185 | 170 | 160 | 150     | 145   |        | 130     |      | 125            | 120 | 115 | (1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | nufactu |      |
| DIN EN 10095           | R <sub>p1</sub>         | 210         | 205 | 190 | 180 | 170     | 165   |        | 150     |      | 145            | 140 | 135 |                                          | figures |      |
| Incoloy 800H           | R <sub>m</sub>          | 450         | 425 |     | 400 |         | 390   |        | 380     |      | 360            |     | 300 |                                          | -       |      |
|                        | R <sub>p 1/1000</sub>   |             |     |     |     |         |       |        |         |      |                |     | 130 | 70                                       | 30      | 13   |
|                        | R <sub>p 1/10000</sub>  |             |     |     |     |         |       |        |         |      |                |     | 90  | 40                                       | 15      | 5    |
|                        | R <sub>m 1000</sub>     |             |     |     |     |         |       |        |         |      |                |     | 200 | 90                                       | 45      | 20   |
|                        | R <sub>m 10000</sub>    |             |     |     |     |         |       |        |         |      |                |     | 152 | 68                                       | 30      | 10   |
|                        | R <sub>m 100000</sub>   |             |     |     |     |         |       |        |         |      |                |     | 114 | 48                                       | 21      | 8    |
| 2.4858                 | R <sub>p 0,2</sub>      | 235         | 205 | 190 | 180 | 175     | 170   | 165    | 160     | 155  |                |     |     |                                          |         |      |
|                        | R <sub>p1</sub>         | 265         | 235 | 220 | 205 | 200     | 195   | 190    | 185     | 180  |                |     |     |                                          |         |      |
|                        | R <sub>m</sub>          | 550         | 530 |     | 515 |         | 500   |        | 490     | 485  |                |     |     |                                          | L .     |      |
| 2.4816                 | R <sub>p 0,2</sub>      | 200         | 180 |     | 165 |         | 155   |        | 150     | 145  |                |     | (;  | Soft ar                                  | nneale  | d)   |
| DIN EN 10095           | R <sub>m</sub>          | 550         | 520 |     | 500 |         | 485   |        | 480     | 475  |                |     |     |                                          |         |      |
| -                      | D                       | -750        | 170 |     | 100 |         | 450   |        | 450     | 4.45 |                |     | , · |                                          |         |      |
|                        | R <sub>p 0,2</sub>      | 180         | 170 |     | 160 |         | 150   |        | 150     | 145  |                |     | (so | lution                                   | annea   | led) |
|                        | R <sub>m</sub>          | 500<br>-700 | 480 |     | 460 |         | 445   |        | 440     | 435  |                |     |     |                                          |         |      |
|                        | R <sub>p 1/10000</sub>  |             |     |     |     |         |       |        |         |      | 153            |     | 91  | 43                                       | 18      | 8    |
|                        | R <sub>p 1/100000</sub> |             |     |     |     |         |       |        |         |      | 126            |     | 66  | 28                                       | 12      | 4    |
|                        | R <sub>m 1000</sub>     |             |     |     |     |         |       |        |         |      |                |     | 160 | 96                                       | 38      | 22   |
|                        | R <sub>m 10000</sub>    |             |     |     |     |         |       |        |         |      | 297            |     | 138 | 63                                       | 29      | 13   |
|                        | R <sub>m 100000</sub>   |             |     |     |     |         |       |        |         |      | 215            |     | 97  | 42                                       | 17      | 7    |

|                        |                                      |     |      |           | Ν         | lateria  | l stren | gth va  | lues in | N/mm    | 1 <sup>2</sup> |         |          |         |         |       |
|------------------------|--------------------------------------|-----|------|-----------|-----------|----------|---------|---------|---------|---------|----------------|---------|----------|---------|---------|-------|
| Material no.<br>to DIN | Type of value                        |     |      |           |           |          | Tempe   | rature  | s in °C | :       |                |         |          |         |         |       |
|                        | 11                                   | RT  | 100  | 150       | 200       | 250      | 300     | 350     | 400     | 450     | 500            | 550     | 600      | 700     | 800     | 900   |
| 2.4819                 | R <sub>p0,2</sub>                    | 310 | 280  |           | 240       |          | 220     |         | 195     |         |                |         |          |         |         |       |
| VdTÜV-W 400            | R <sub>p1</sub>                      | 330 | 305  |           | 275       |          | 215     |         | 200     |         |                |         |          |         |         |       |
| 2.4856                 | R <sub>p 0,2</sub>                   | 410 | 350  |           | 320       |          | 300     |         | 280     |         | 170            |         |          |         |         |       |
| DIN EN 10095           | R <sub>p 1/100000</sub>              |     |      |           |           |          | Μ       | anufa   | cturer' | s figur | es             |         | 250      | 90      | 30      | 10    |
|                        | R <sub>m 100000</sub>                |     |      |           |           |          |         | for In  | conel   | 625 H   |                |         | 290      | 135     | 45      | 18    |
|                        | R <sub>m 1000</sub>                  |     |      |           |           |          |         |         |         |         |                |         |          | 260     | 107     | 34    |
| 0.4040                 | R <sub>m 10000</sub>                 |     |      |           |           |          |         |         | 0.05    |         |                |         |          | 190     | 63      | 20    |
| 2.4610                 | R <sub>p 0,2</sub>                   | 305 | 285  |           | 255       |          | 245     |         | 225     |         |                |         |          | (S<     | = 5 )   |       |
| 0.4000                 | R <sub>p1</sub>                      | 340 | 315  |           | 285       | 400      | 270     | 400     | 260     | (400)   |                |         |          |         |         |       |
| 2.4360                 | R <sub>p 0,2</sub>                   | 175 | 150  | 140       | 135       | 132      | 130     | 130     | 130     | (130)   |                | ,       | 1        |         | - 405 0 | ~     |
|                        | R <sub>m</sub>                       | 450 | 420  | 400       | 390       | 385      | 380     | 375     | 370     | (360)   |                | (       | ) = va   | iues fo | r 425 ° | L     |
|                        | R <sub>p 1/10000</sub>               |     |      |           | 107       | 99       | 92      | 84      |         |         |                |         |          |         |         |       |
|                        | R <sub>p 1/100000</sub><br>K/S       |     |      |           | 102       | 94       | 86      | 78      |         |         |                |         |          |         |         |       |
|                        |                                      | 93  | 87   | 84        | 82        | 80       | 78      | 75      |         |         |                |         |          | -       |         |       |
| CW354H                 | R <sub>p1</sub>                      | 140 | 130  | 126       | 123       | 120      | 117     | 112     |         |         |                |         |          |         |         |       |
| 2.0882                 | R <sub>p 1/10000</sub>               |     |      |           | 107       | 99       | 92      | 84      |         | -       |                |         |          |         |         |       |
|                        | R <sub>p 1/100000</sub>              |     |      |           | 102       | 94       | 86      | 78      |         | Perm    | nissible       | e tensi | ion to a | AD-W    | 6/2 für | 10° h |
|                        | K/S                                  |     | 93   | 87        | 84        | 82       | 80      | 78      | 75      |         |                |         | -        |         |         |       |
| CW024A                 | R <sub>p1</sub>                      | 65  | 58   | 58        |           |          |         |         |         |         |                |         |          |         |         |       |
| 2.0090                 | R <sub>m</sub>                       | 220 | 220  | 195       | 170       | 145      |         |         |         |         |                |         |          |         |         |       |
|                        | R <sub>p 2/10000</sub>               |     | 58   | 53        | 46        | 37       |         |         |         |         |                |         |          |         |         |       |
|                        | R <sub>p 2/100000</sub>              |     | 56   | 49        | 40        | 30       |         | Ι.      |         | ۱.      |                |         |          |         |         |       |
|                        | K/S<br>K/S                           | 57  | 57   | 50        | 43        | 36       | 1       | ermiss  | ible te | nsion   | to AD-         | VV 6/2  | fur 10   | 'n      | (F20)   |       |
|                        |                                      | 67  | 63   | 56        | 49        | 41       |         |         |         |         |                |         |          |         | (F22)   |       |
| 3.3535                 | R <sub>p 0,2</sub>                   | 80  | 70   |           |           | Per      | missit  | ole ten | sion to | DAD-W   | /6/1           |         |          |         |         |       |
| EN-AW 5754             | R <sub>m 100000</sub>                |     | (80) | 45        |           |          |         |         |         |         |                |         |          |         |         |       |
| 2.4068                 | R <sub>p 0,2</sub>                   | 80  | 70   |           | 65        |          | 60      |         | 55      |         | 50             |         | 40       |         |         |       |
| Nickel                 | R <sub>p1</sub>                      | 105 | 95   |           | 90        |          | 85      |         | 80      |         | 75             |         | 65       |         |         |       |
|                        | R <sub>m</sub>                       | 340 | 290  |           | 275       |          | 260     |         | 240     |         | 210            |         | 150      |         |         |       |
|                        | R <sub>p 1/10000</sub>               |     |      |           |           |          |         |         | 75      | 55      | 35             | 19      | 10       |         |         |       |
| 0.7005                 | R <sub>p 1/100000</sub>              | -   | 400  | 450       |           |          |         | 85      | 60      | 40      | 23             | 11      | 6        |         |         |       |
| 3.7025                 | R <sub>p1</sub>                      | 200 | 180  | 150       | 110       | 90       |         |         |         |         |                |         |          |         |         |       |
| Titan                  | R <sub>m 10000</sub>                 | 220 | 160  | 150       | 130       | 110      |         |         |         |         |                |         |          |         |         |       |
| Tantal                 | R <sub>m 100000</sub>                | 200 | 145  | 130<br>90 | 120<br>80 | 90<br>70 |         |         |         |         |                |         |          | I       | I       |       |
| Idilla                 | R <sub>p 0,2</sub><br>R <sub>m</sub> | 225 | 200  |           | 80<br>175 | 160      | 150     |         |         |         |                |         | Elec     | tron be | eam m   | elted |
|                        | Δ                                    | 35  | 200  | 185       | 1/5       | 100      | 150     |         |         |         |                |         |          |         |         |       |
| -                      | A 30[%]                              | 200 | 160  | 150       | 140       | 130      |         |         |         |         |                |         |          |         |         |       |
|                        | R <sub>p 0,2</sub><br>R <sub>m</sub> | 200 | 270  | 260       | 240       | 230      |         |         |         |         |                |         | Sir      | itered  | in vacı | um    |
|                        | Δ                                    | 280 | 2/0  | 200       | 240       | 230      |         |         |         |         |                |         | "        |         | + 460   |       |
|                        | A 30[%]                              | 20  |      |           |           |          |         |         |         |         |                |         |          |         |         |       |

1) Room temperature values valid to 50 °C

1) Room temperature values valid to 50 °C



Material designations according to international specifications

|                              |               | USA                |                                                                                                                                         |                                              | JAPAN                |                                      |
|------------------------------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|--------------------------------------|
| Material<br>no. to<br>DIN EN | Standard      | UNS<br>designation | Semi-finished product<br>applications / title                                                                                           | Standard                                     |                      | Semi-finished produc<br>applications |
| 1.0254                       | ASTM A 53-01  | A 53               | Welded and seamless<br>black-oxidized and<br>galvanized steel tubes                                                                     | JIS G 3445<br>(1988)                         | STKM 12 A            | Tubes                                |
|                              | ASTM A 106-99 | K02501<br>A 106    | Seamless tubes of high-<br>temperature unalloyed steel                                                                                  | JIS G 3454<br>(1988)<br>JIS G 3457           | STPG 370<br>STPY 400 | Pipes under pressure<br>Welded tubes |
| 1.0255                       | ASTM A 135-01 | K03013<br>A 135    | Electric resistance<br>welded tubes                                                                                                     | (1988)<br>JIS G 3455<br>(1988)               | STS 370              | Pipes subjected to high<br>pressures |
| 1.0038                       | ASTM A 500-01 | K03000<br>A 500    | Welded and seamless<br>fittings of cold-formed unal-<br>loyed steel                                                                     |                                              |                      |                                      |
| 1.0050                       |               |                    |                                                                                                                                         | JIS G 3101<br>(1995)                         | SS 490               | General structural steels            |
| 1.0570                       | ASTM A 694-00 | K03014<br>A 694    | Forgings of unalloyed<br>and alloyed steel for pipe<br>flanges, fittings, valves and<br>other parts for high-<br>pressure drive systems | JIS G 3106<br>(1999)<br>JIS G 3106<br>(1999) | SM 490 A<br>SM 520 B | Steels for welded constructions      |
| 1.0345                       | ASTM A 414-01 | K02201<br>A 414    | Sheet of unalloyed steel<br>for pressure tanks                                                                                          | JIS G 3115<br>(2000)                         | SPV 450              | Heavy plate for pressure<br>vessels  |
| 1.0425                       | ASTM A 414-01 | K02505<br>A 414    |                                                                                                                                         | JIS G 3118<br>(2000)                         | SGV 480              |                                      |
| 1.0481                       | ASTM A 414-01 | K02704<br>A 414    |                                                                                                                                         | JIS G 3118<br>(2000)                         | SGV 410              |                                      |
| 1.5415                       | ASTM A 204-99 | K12320<br>A 204    | Sheet of molybdenum alloyed<br>steel for pressure tanks                                                                                 | JIS G 3458<br>(1988)                         | STPA 12              | Tubes                                |
| 1.7335                       | ASTM A 387-99 | K11789<br>A 387    | Sheet of Cr-Mo alloyed<br>steel for pressure tanks                                                                                      | JIS G 3462<br>(1988)                         | STBA 22              | Boiler and heat exchange<br>pipes    |
| 1.7380                       | ASTM A 387-99 | K21590<br>22 (22L) |                                                                                                                                         | JIS G 4109<br>(1987)                         | SCMV 4               | Heavy plate for pressure<br>vessels  |
| 1.0305                       | ASTM A 106-99 | K02501<br>A 106    | Seamless tubes of high-<br>temperature unalloyed steel                                                                                  | JIS G 3461<br>(1988)                         | STB 340              | Boiler and heat exchange<br>pipes    |

# 7.2 Material datasheets

# Material datasheets

Material designations according to international specifications

|                              |                     | KOREA    |                                       |                   | CHINA               |                                        |
|------------------------------|---------------------|----------|---------------------------------------|-------------------|---------------------|----------------------------------------|
| Material<br>no. to<br>DIN EN | Standard            |          | Semi-finished product<br>applications | Standard          | Designation         | Semi-finished product applications     |
| 1.0254                       | KS D 3583           | SPW 400  | Welded tubes of                       |                   |                     |                                        |
|                              | (1992)              |          | carbon steel                          |                   |                     |                                        |
|                              |                     |          |                                       |                   |                     |                                        |
| 1.0255                       |                     |          |                                       |                   |                     |                                        |
| 1.0038                       |                     |          |                                       | GBT 700           | Q 235 B:            | (unalloyed structural                  |
|                              |                     |          |                                       | (1988)            | U12355              | steels)                                |
| 1.0050                       | KS D 3503           | SS 490   | General structural steels             | GBT 700           | Q 275;              |                                        |
|                              | (1993)              |          |                                       | (1988)            | U12752              |                                        |
| 1.0570                       | KS D 3517           | STKM 16C | Unalloyed steel tubes for gen-        | GBT 713           | 16Mng;              | Plate for steam boilers                |
|                              | (1995)              |          | eral mechanical engineering           | (1997)            | L20162              |                                        |
| -                            |                     |          |                                       | GBT 8164          | 16Mn;               | Strip for welded tubes                 |
|                              |                     |          |                                       | (1993)            | L20166              |                                        |
| 1.0345                       | KS D 3521           | SPPV 450 | Heavy plate for pressure vessels      |                   |                     |                                        |
|                              | (1991)              |          | for medium application temp.          |                   |                     |                                        |
| 1.0425                       | KS D 3521<br>(1991) | SPPV 315 | -                                     |                   |                     |                                        |
| 1.0481                       |                     |          |                                       |                   |                     |                                        |
| 1.5415                       | KS D 3572           | STHA 12  | Tubes for boilers and heat            | GB 5310           | 15MoG;              | Seamless tubes for                     |
|                              | (1990)              |          | exchangers                            | (1995)            | A65158              | pressure vessels                       |
| 1.7335                       | KS D 3572           | STHA 22  |                                       | YBT 5132          | 12CrMo;             | Plate of alloyed                       |
|                              | (1990)              | -        |                                       | (1993)            | A30122              | structural steels                      |
| 1.7380                       | KS D 3543<br>(1991) | SCMV 4   | Cr-Mo steel for pressure<br>vessels   | GB 5310<br>(1995) | 12Cr2MoG;<br>A30138 | Seamless tubes for<br>pressure vessels |
| 1.0305                       | (1551)              | +        | *033013                               | (1000)            | A00100              | Prossure Aesseis                       |



Material designations according to international specifications

|                              |               | USA                          |                                            |            | JAPAN       |                                      |
|------------------------------|---------------|------------------------------|--------------------------------------------|------------|-------------|--------------------------------------|
| Material<br>no. to<br>DIN EN | Standard      | UNS<br>designation<br>(AISI) | Semi-finished product applications / title | Standard   | Designation | Semi-finished produc<br>applications |
| 1.0562                       | ASTM A 299-01 | K02803                       | Plate of C-Mn-Si steel                     | JIS G 3106 | SM 490      | Steels for welded                    |
|                              |               | A 299                        | for pressure tanks                         | (1999)     | A;B;C;      | constructions                        |
|                              | ASTM A 714-99 | K12609                       | Welded and seamless                        | JIS G 3444 | STK 490     | Steels for welded                    |
|                              |               | A 714 (II)                   | tubes of high-strength                     | (1994)     |             | constructions                        |
|                              |               |                              | low-alloy steel                            |            |             |                                      |
| 1.0565                       | ASTM A 633-01 | K12037                       | Normalized high-strength                   |            |             |                                      |
|                              |               | A633(D)                      | low-alloy structural steel                 |            |             |                                      |
|                              |               |                              |                                            |            |             |                                      |
|                              | ASTM A 724-99 | K12037                       | Plate of tempered unal-                    |            | Station     |                                      |
|                              |               | A724(C)                      | loyed steel for welded                     |            |             |                                      |
|                              |               |                              | pressure tanks of layered                  |            |             |                                      |
|                              |               |                              | construction                               |            |             |                                      |
| 1.0566                       | ASTM A 573-00 | K02701                       | Plate of unalloyed struc-                  | JIS G 3126 | SLA 365     | Heavy plate for pressure             |
|                              |               | A 573                        | tural steel with improved                  | (2000)     |             | vessels (low temperature)            |
|                              |               |                              | toughness                                  |            |             |                                      |
| 1.1106                       | ASTM A 707-02 | K12510                       | Forged flanges of alloyed                  | JIS G 3444 | STK 490     | Tubes for general use                |
|                              |               | A 707 (L3)                   | and unalloyed steel for use                | (1994)     |             |                                      |
|                              |               |                              | in low temperatures                        |            |             |                                      |
|                              |               |                              |                                            |            |             |                                      |

# 7.2 Material datasheets

# Material datasheets

Material designations according to international specifications

|                              |                     | KOREA       |                                                    |                   | CHINA              |                                     |
|------------------------------|---------------------|-------------|----------------------------------------------------|-------------------|--------------------|-------------------------------------|
| Material<br>no. to<br>DIN EN | Standard            | Designation | Semi-finished product applications / title         | Standard          | Designation        | Semi-finished product applications  |
| 1.0562                       |                     |             |                                                    |                   |                    |                                     |
|                              |                     |             |                                                    |                   |                    |                                     |
| 1.0565                       |                     |             |                                                    |                   |                    |                                     |
|                              |                     |             |                                                    |                   |                    |                                     |
| 1.0566                       | KS D 3541<br>(1991) | SLA1 360    | Heavy plate for pressure vessels (low temperature) | GBT 714<br>(2000) | Q420q-D;<br>L14204 | Steels for bridge construction      |
| 1.1106                       |                     |             |                                                    | GB 6654<br>(1996) | 16MnR;<br>L20163   | Heavy plate for<br>pressure vessels |



Material designations according to international specifications

|                              |               | USA                          |                                                                     |                      | JAPAN     |                                             |
|------------------------------|---------------|------------------------------|---------------------------------------------------------------------|----------------------|-----------|---------------------------------------------|
| Material<br>no. to<br>DIN EN | Standard      | UNS<br>designation<br>(AISI) | Semi-finished product<br>applications / title                       | Standard             |           | Semi-finished produc applications           |
| 1.4511                       |               |                              |                                                                     | JIS G 4305<br>(1999) | SUS 430LX | Cold-rolled sheet, heavy<br>plate and strip |
| 1.4512                       | ASTM A 240-02 | S40900;<br>A 240<br>(409)    | Sheet and strip of<br>heatproof stainless<br>Cr and Cr-Ni steel for |                      |           |                                             |
| 1.4301                       | ASTM A 240-02 | S30400;<br>A 240<br>(304)    | pressure tanks                                                      | JIS G 4305<br>(1999) | SUS 304   | Cold-rolled sheet, heavy<br>plate and strip |
| 1.4306                       | ASTM A 240-02 | S30403;<br>A 240<br>(304L)   |                                                                     | JIS G 4305<br>(1999) | SUS 304L  |                                             |
| 1.4541                       | ASTM A 240-02 | S32100<br>A 240<br>(321)     |                                                                     | JIS G 4305<br>(1999) | SUS 321   |                                             |
| 1.4571                       | ASTM A 240-02 | S31635<br>A240<br>(316Ti)    |                                                                     | JIS G 4305<br>(1999) | SUS 316Ti |                                             |
| 1.4404                       | ASTM A 240-02 | S31603<br>A240<br>(316L)     |                                                                     | JIS G 4305<br>(1999) | SUS 316L  |                                             |
| 1.4435                       | ASTM A 240-02 | S31603<br>A240<br>(316L)     |                                                                     | JIS G 4305<br>(1999) | SUS 316L  |                                             |
| 1.4565                       | ASTM A 240-02 | S34565<br>A240               |                                                                     |                      |           |                                             |
| 1.4539                       | ASTM A 240-02 | N08904<br>A240<br>(904L)     |                                                                     |                      |           |                                             |
| 1.4529                       | ASTM B 625-99 | N08925<br>B 625              | Sheet and strip of low-<br>carbon Ni-Fe-Cr-Mo-Cu<br>alloys          |                      |           |                                             |

# 7.2 Material datasheets

# Material datasheets

Material designations according to international specifications

|                              |                     | KOREA       |                                             |                    | CHINA                     |                                                  |
|------------------------------|---------------------|-------------|---------------------------------------------|--------------------|---------------------------|--------------------------------------------------|
| Material<br>no. to<br>DIN EN | Standard            | Designation | Semi-finished product applications          | Standard           | Designation               | Semi-finished product applications               |
| 1.4511                       | KS D 3698<br>(1992) | STS 430LX   | Cold-rolled sheet, heavy<br>plate and strip |                    |                           | olled sheet, heavy plate<br>and strip            |
| 1.4512                       |                     |             |                                             | GBT 4238<br>(1992) | 0Cr11Ti;<br>S11168        | Hot-rolled sheet of<br>heatproof steel, ferritic |
| 1.4301                       | KS D 3698<br>(1992) | STS 304     | Cold-rolled sheet, heavy plate and strip    | GBT 3280<br>(1992) | 0Cr18Ni9;<br>S30408       | Cold-rolled sheet, heavy<br>plate and strip      |
| 1.4306                       | KS D 3698<br>(1992) | STS 304L    |                                             | GBT 3280<br>(1992) | 00Cr19Ni10;<br>S30403     |                                                  |
| 1.4541                       | KS D 3698<br>(1992) | STS 321     |                                             | GBT 3280<br>(1992) | 0Cr18Ni10Ti;<br>S32168    |                                                  |
| 1.4571                       | KS D 3698<br>(1992) | STS 316Ti   | -                                           | GBT 3280<br>(1992) | 0Cr18Ni12Mo2Cu2<br>S31688 |                                                  |
| 1.4404                       | KS D 3698<br>(1992) | STS 316L    | -                                           | GBT 4239<br>(1991) | 00Cr17Ni14Mo2;<br>S31603  |                                                  |
| 1.4435                       | KS D 3698<br>(1992) | STS 316L    |                                             | GBT 3280<br>(1992) | 00Cr17Ni14Mo2;<br>S31603  |                                                  |
| 1.4565                       |                     |             |                                             |                    |                           |                                                  |
| 1.4539                       |                     |             |                                             |                    |                           |                                                  |
| 1.4529                       | KS D 3698<br>(1992) | STS 317J5L  | Cold-rolled sheet, heavy plate and strip    |                    |                           |                                                  |



Material designations according to international specifications

|                              |               | USA                          |                                               |            | JAPAN       |                                    |
|------------------------------|---------------|------------------------------|-----------------------------------------------|------------|-------------|------------------------------------|
| Material<br>no. to<br>DIN EN | Standard      | UNS<br>Designation<br>(AISI) | Semi-finished product<br>applications / title | Standard   | Designation | Semi-finished product applications |
| 1.4948                       | ASTM A 240-02 | S30409                       | Sheet and strip of heatproof                  |            |             |                                    |
|                              |               | A240                         | stainless Cr and Cr-Ni steel                  |            |             |                                    |
|                              |               | (304H)                       | for pressure tanks                            |            |             |                                    |
| 1.4919                       | ASTM A 240-02 | S31609                       |                                               |            |             |                                    |
|                              |               | A240                         |                                               |            |             |                                    |
|                              |               | (316H)                       |                                               |            |             |                                    |
| 1.4958                       | ASTM A 240-02 | N 08810                      |                                               |            |             |                                    |
|                              |               | A 240                        |                                               |            |             |                                    |
| 1.4828                       | ASTM A 167-99 | S30900                       | Sheet and strip of stainless                  | JIS G 4312 | SUH 309     | Heatproof sheet and                |
|                              |               | A 167                        | heatproof Cr-Ni steel                         | (1991)     |             | heavy plate                        |
|                              |               | (309)                        |                                               |            |             |                                    |
| 1.4876                       | ASTM A 240-02 | N 08800                      | Sheet and strip of stainless                  | JIS G 4902 | NCF 800     | Special alloy in sheet form        |
|                              |               | A 240                        | heatproof Cr and Cr-Ni steel                  | (1991)     |             |                                    |
|                              |               |                              | for pressure tanks                            |            |             |                                    |
| 2.4858                       | ASTM B 424-98 | N 08825                      | Sheet and strip of low-carbon                 | JIS G 4902 | NCF 825     |                                    |
|                              |               | B 424                        | Ni-Fe-Cr-Mo-Cu alloys                         | (1991)     |             |                                    |
|                              |               |                              | (UNS N08825 and N08221)                       |            |             |                                    |
| 2.4816                       | ASTM B 168-98 | N 06600                      | Sheet and strip of low-carbon                 |            |             |                                    |
|                              |               | B 168                        | Ni-Cr-Fe and Ni-Cr-Co-Mo allo-                |            |             |                                    |
|                              |               |                              | ys (UNS N06600 and N06690)                    |            |             |                                    |
| 2.4819                       | ASTM B 575-99 | N 10276                      | Sheet and strip of low-carbon                 |            |             |                                    |
|                              |               | B 575                        | Ni-Mo-Cr alloys                               |            |             |                                    |
| 2.4856                       | ASTM B 443-99 | N 06625                      | Sheet and strip of Ni-Cr-Mo-Nb                | JIS G 4902 | NCF 625     | Special alloy in sheet form        |
|                              |               | B 443                        | alloy (UNS N06625)                            | (1991)     |             |                                    |
| 2.4610                       | ASTM B 575-99 | N 06455                      | Sheet and strip of low-carbon                 |            | 1           |                                    |
|                              |               | B 575                        | Ni-Mo-Cr alloys                               |            |             |                                    |
| 2.4360                       | ASTM B 127-98 | N 04400                      | Sheet and strip of Ni-Cu alloy                |            |             |                                    |
|                              |               | B 127                        | (UNS N04400)                                  |            |             |                                    |

# 7.2 Material datasheets

# Material datasheets

Material designations according to international specifications

|                              |                     | KORE        | A                                               |                     | CHINA                   |                                    |
|------------------------------|---------------------|-------------|-------------------------------------------------|---------------------|-------------------------|------------------------------------|
| Material<br>no. to<br>DIN EN | Standard            | Designation | Semi-finished product applications              | Standard            | Designation             | Semi-finished product applications |
| 1.4948                       |                     |             |                                                 |                     |                         |                                    |
| 1.4919                       |                     |             |                                                 |                     |                         |                                    |
| 1.4958                       |                     |             |                                                 |                     |                         |                                    |
| 1.4828                       | KS D 3732<br>(1993) | STR 309     | Heatproof sheet and<br>heavy plate              | GBT 1221<br>(1992)  | 1Cr20Ni14Si2;<br>S38210 | Heatproof steels,<br>austenitic    |
| 1.4876                       | KS D 3532<br>(1992) | NCF 800     | Special alloys in sheet and<br>heavy plate form | GBT 15007<br>(1994) | NS 111;<br>H01110       | Stainless alloys                   |
| 2.4858                       | KS D 3532<br>(1992) | NCF 825     |                                                 | GBT 15007<br>(1994) | NS 142;<br>H01420       |                                    |
| 2.4816                       |                     |             |                                                 | GBT 15007<br>(1994) | NS 312;<br>H03120       |                                    |
| 2.4819                       |                     |             |                                                 | GBT 15007<br>(1994) | NS 333;<br>H03330       |                                    |
| 2.4856                       | KS D 3532<br>(1992) | NCF 625     | Special alloys in sheet and<br>heavy plate form | GBT 15007<br>(1994) | NS 336;<br>H03360       |                                    |
| 2.4610                       |                     |             |                                                 | GBT 15007<br>(1994) | NS 335;<br>H03350       |                                    |
| 2.4360                       |                     |             |                                                 |                     |                         |                                    |

Threaded fasteners of malleable cast iron are applicable up to the operating pressures indicated in the table below, depending on type of fluid and operating temperature.

|      |             | permissible          | operating pressure for t | he fluids       |              |
|------|-------------|----------------------|--------------------------|-----------------|--------------|
| DN   | d           | water and gas        | gases and steam          | gases and steam | oils         |
|      | Inch        | up to max.<br>120 °C | up to max. 150 °C        | up to 250 °C    | up to 200 °C |
|      |             | nipples, f           | lat sealing threaded fas | teners          | •            |
| 6-50 | 1⁄4 - 2     | 65 bar               | 50 bar                   | 40 bar          | 35 bar       |
|      |             | conicall             | y sealing threaded faste | eners           |              |
| 6-32 | 1/4 - 1 1/4 | 65 bar               | 50 bar                   | 40 bar          | 35 bar       |
| 40   | 1 1⁄2       | 65 bar               | 50 bar                   | 40 bar          | 30 bar       |
| 50   | 2           | 55 bar               | 40 bar                   | 32 bar          | 24 bar       |

Sealing is to be carried out with special care. The sealing materials are to be selected according to the operating conditions. Only approved sealing materials must be applied for sealing of threaded fasteners in drinking water and gas pipe systems.

Only high-quality threads are appropriate for high operating requirements.

#### 7.4 Corrosion resistance

#### General

Flexible metal elements are basically suitable for the transport of critical fluids if a sufficient resistance is ensured against all corrosive media that may occur during the entire lifetime.

The flexibility of the corrugated elements like bellows or corrugated hoses generally require their wall thickness to be considerably smaller than that of all other parts of the system in which they are installed.

As therefore increasing the wall thickness to prevent damages caused by corrosion is not reasonable, it becomes essential to select a suitable material for the flexible elements which is sufficiently resistant.

Special attention must be paid to all possible kinds of corrosion, especially pitting corrosion, intercrystalline corrosion, crevice corrosion, and stress corrosion cracking, (see Types of corrosion).

This leads to the fact that in many cases at least the ply of the flexible element that is exposed to the corrosive fluid has to be chosen of a material with even higher corrosion resistance than those of the system parts it is connected to (see Resistance table).



#### Types of corrosion

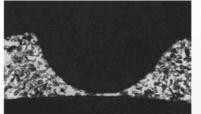
According to EN ISO 8044, corrosion is the "physicochemical interaction between a metal and its environment that results in changes in the properties of the metal, and which may lead to significant impairment of the function of the metal, the environment, or the technical system, of which these form a part. This interaction is often of an electrochemical nature".

Different types of corrosion may occur, depending on the material and on the corrosion conditions. The most important corrosion types of ferrous and non-ferrous metals are described below.

#### Uniform corrosion

A general corrosion proceeding at almost the same rate over the whole surface. The loss in weight which occurs is generally specified either in g/m<sup>2</sup>h or as the reduction in the wall thickness in mm/year.

This type of corrosion includes the rust which commonly is found on unalloyed steel (e. g. caused by oxidation in the presence of water).


Stainless steels can only be affect by uniform corrosion under extremely unfavourable conditions, e.g. caused by liquids, such as acids, bases and salt solutions.

#### 7.4 Corrosion resistance

#### **Pitting corrosion**

A locally limited corrosion attack that may occur under certain conditions, called pitting corrosion on account of its appearance. It is caused by the effects of chlorine, bromine and iodine ions, especially when they are present in hydrous solutions.

This selective type of corrosion cannot be calculated, unlike surface corrosion, and can therefore only be kept under control by choosing an adequate resistant material. The resistance of stainless steels to pitting corrosion increases in line with the molybdenum content in the chemical composition of the material. The resistance of materials to pitting corrosion can approximately be compared by the so-called pitting resistance equivalent (PRE = Cr % + 3.3 · Mo % + 30 N %), whereas the higher values indicate a better resistance.



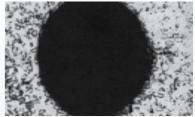



Fig. 7.1 Pitting corrosion on a cold strip made of austenitic steel. Plan view (50-fold enlargement)

Fig. 7.2 Sectional view (50-fold enlargement)

#### Intergranular corrosion

Intergranular corrosion is a local, selective type of corrosion which primarily affects the grain boundaries. It is caused by deposits in the material structure, which lead to a reduction in the corrosion resistance in the regions close to the grain boundaries. In stainless steels this type of corrosion can advance up to the point where the grain composition is dissolved (grain disintegration: Fig.7.3)

These deposit processes are dependent on temperature and time in CrNi alloys, whereby the critical temperature range is between 550 and 650 °C and the period up to the onset of the deposit processes differs according to the type of steel.

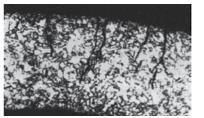




Fig. 7.3 Intergranular corrosion (decay) in austenitic material 1.4828. Sectional view (100-fold enlargement)

This must be taken into account, for example, when welding thick-walled parts with a high thermal capacity. These depositrelated changes in the structure can be reversed by means of solution annealing (1000 - 1050 °C).

This type of corrosion can be avoided by using stainless steels with low carbon content ( $\leq 0.03 \%$  C) or containing elements, such as titanium or niobium. For flexible elements, this may be stabilized material qualities like 1.4541, 1.4571 or low-carbon qualities like 1.4404, 1.4306.


The resistance of materials to intergranular corrosion can be verified by a standardized test (Monypenny - Strauss test according to ISO 3651-2). Certificates to be delivered by the material supplier, proving resistant to IGC according to this test are therefore asked for in order and acceptance test specifications.

#### Stress corrosion cracking

This type of corrosion is observed most frequently in austenitic materials, subjected to tensile stresses and exposed to a corrosive agent. The most important agents are alkaline solutions and those containing chloride.

The form of the cracks may be either transgranular or intergranular. Whereas the transgranular form only occurs at temperatures higher than 50 °C (especially in solutions containing chloride), the intergranular form can be observed already at room temperature in austenitic materials in a neutral solutions containing chloride.

At temperatures above 100 °C SCC can already be caused by very small concentrations of chloride or lye – the latter always leads to the transgranular form.



7.4 Corrosion resistance

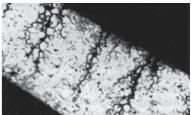



Fig. 7.4 Transgranular stress corosion cracking on a cold strip made of austenitic steel. Sectional view (50-fold enlargement)

Fig. 7.5 Intergranular stress corosion cracking on a cold strip made of austenitic steel. Sectional view (50-fold enlargement)

Stress corrosion cracking takes the same forms in non-ferrous metals as in austenitic materials. Damage caused by intergranular stress corrosion cracking can occur in nickel and nickel alloys in highly concentrated alkalis at temperatures above 400 °C, and in solutions or water vapour containing hydrogen sulphide at temperatures above 250 °C. A careful choice of materials based on a detailed knowledge of the existing operating conditions is necessary to prevent from this type of corrosion damage.

#### **Crevice corrosion**

Crevice corrosion is a localized, seldom encountered form of corrosion found in crevices which are the result of the design or of deposits. This corrosion type is caused by the lack of oxygen in the crevices, oxygen being essential in passive materials to preserve the passive layer.

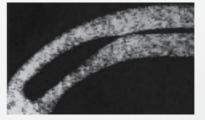



Fig. 76 Crevice corrosion on a cold strip made from austenitic steel. Sectional view (50-fold enlargement)





Because of the risk of crevice corrosion design and applications should be avoided which represent crevice or encourage deposits.

The resistance of high-alloy steels and Ni-based alloys to this type of corrosion increases in line with the molybdenum content of the materials. Again pitting resistance equivalent (PRE) (see Pitting corrosion) can be taken as criteria for a ssessing the resistance to crevice corrosion.

#### Dezincing

A type of corrosion which occurs primarily in copper-zinc alloys with more than 20% zinc. During the corrosion process the copper is separated from the brass, usually in the form of a spongy mass. The zinc either remains in solution or is separated in the form of basic salts above the point of corrosion. The dezincing can be either of the surface type or locally restricted, and can also be found deeper inside.

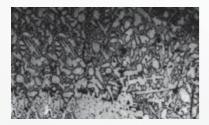



Fig. 77 Dezincing on a Copper-Zinc alloy (Brass / CuZn37). Sectional view (100-fold enlargement)

Conditions which encourage this type of corrosion include thick coatings from corrosion products, lime deposits from the water or other deposits of foreign bodies on the metal surface. Water with high chloride content at elevated temperature in conjunction with low flow velocities further the occurrence of dezincing.

#### **Contact corrosion**

A corrosion type which may result from a combination of different materials. Galvanic potential series are used to assess the risk of contact corrosion, e.g. in seawater. Metals which are close together on the potential series are mutually compatible; the anodic metal corrodes increasingly in line with the distance between two metals.

#### 7.4 Corrosion resistance

Materials which can be encountered in both the active and passive state must also be taken into account. A CrNi alloy, for example, can be activated by mechanical damage to the surface, by deposits (diffusion of oxygen made more difficult) or by corrosion products on the surface of the material. This may result in a potential difference between the active and passive surfaces of the metal, and in material erosion (corrosion) if an electrolyte is present.

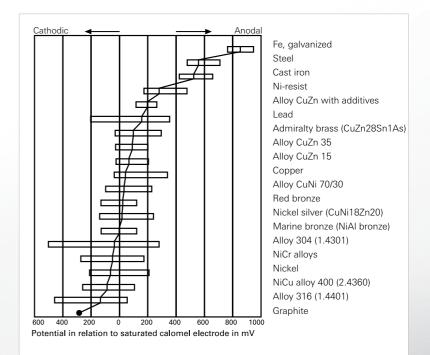



Fig. 7.8 Galvanic potentials in seawater Source: DECHEMA material tables



# **Resistance table**

The table below provides a summery of the resistance to different media for metal materials most commonly used for flexible elements. The table has been drawn up on the basis of relevant sources in accordance with the state of the art; it makes jet no claims to completeness.

The main function of the table is to provide the user with an indication of which materials are suitable or of restricted suitability for the projected application, and which can be rejected right from the start.

The data constitutes recommendations only, for which no liability can be accepted. The exact composition of the working medium, varying operating states and other boundary operating conditions must be taken into consideration when choosing the material.

# 7.4 Corrosion resistance

#### Table key

| Assessment | Corrosion behaviour                                                                                           | Suitability               |
|------------|---------------------------------------------------------------------------------------------------------------|---------------------------|
| 0          | resistant                                                                                                     | suitable                  |
| 1          | uniform corrosion with reduction<br>in thickness of up to 1 mm/year                                           |                           |
| Р          | risk of pitting corrosion                                                                                     | restricted<br>suitability |
| S          | risk of stress corrosion cracking                                                                             |                           |
| 2          | hardly resistant, uniform corrosion<br>with reduction in thickness of more<br>than 1 mm/year up to 10 mm/year | not<br>recommended        |
| 3          | not resistant<br>(different forms of corrosion)                                                               | unsuitable                |

#### Meanings of abbreviations

| adp: | acid dew point                       |  |
|------|--------------------------------------|--|
| bp:  | boiling point                        |  |
| cs:  | cold-saturated (at room temperature) |  |
| dr:  | dry condition                        |  |
| hy:  | hydrous solution                     |  |
| me:  | melted                               |  |
| mo:  | moist condition                      |  |
| sa:  | saturated (at boiling point)         |  |
|      |                                      |  |



# **Resistance table**

| Medium                                                                                                                     |                           |                                                                                                                                                                                                                                                                                                   |                        |                                                |                            |                            |                       |                            |                            | N                                   | later                      | ials                         |        |        |             |                       |                            |                            |                  |             |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|-------------------------------------|----------------------------|------------------------------|--------|--------|-------------|-----------------------|----------------------------|----------------------------|------------------|-------------|
|                                                                                                                            | Concentration             | s                                                                                                                                                                                                                                                                                                 |                        | ainle<br>steel:                                |                            |                            | Nick                  | cel al                     | loys                       |                                     |                            | oppe<br>alloy:               |        |        | Р           | ure r                 | netal                      | S                          |                  |             |
| Designation<br>Chemical formula                                                                                            | Conce                     | Temperature                                                                                                                                                                                                                                                                                       | lloy steel             | s                                              | teels                      | Mo                         | 2.4858 / alloy        | alloy 600                  | y 625                      | 19 /alloy                           | y 400                      | >                            |        |        |             |                       |                            |                            |                  |             |
|                                                                                                                            | %                         | С                                                                                                                                                                                                                                                                                                 | Non-/low- alloy steels | Ferritic steels                                | Austenitic steels          | Austenitic + Mo            | steels 2.48           | 8252.4816 / alloy 600      | 2.4856 / alloy 625         | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400         | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper      | Nickel                | Titanium                   | Tantalum                   | Aluminium        | Silver      |
| $\begin{array}{l} \textbf{Acetanilide} \text{ (Antifebrine)} \\ \textbf{C}_{_{8}}\textbf{H}_{_{9}}\textbf{N0} \end{array}$ |                           | <114                                                                                                                                                                                                                                                                                              | 0                      | 0                                              | 0                          | 0                          | 0                     | 0                          | 0                          | 0                                   | 0                          | 0                            | 0      | 0      |             | 0                     | 0                          | 0                          | 0                | 0           |
| <b>Acetic acid</b><br>CH <sub>4</sub> COOH or C <sub>2</sub> H <sub>4</sub> O <sub>2</sub>                                 | 5<br>50<br>50<br>96<br>98 | 20<br>bp<br>20<br>20<br>20<br>20<br>bp                                                                                                                                                                                                                                                            | N N N N N N N          | 0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>3<br>P<br>3<br>3 | 0<br>0<br>0<br>P<br>2<br>3 | 0<br>0<br>0<br>0<br>0 | 1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0          | 1<br>1<br>1<br>1<br>1<br>1 |                              |        |        | 0<br>0<br>3 | 3<br>3<br>3<br>3<br>3 | 0<br>0<br>1<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>3<br>0 | 0<br>1<br>0 |
| Acetic acid vapour                                                                                                         | 33<br>100<br>100          | 20<br>>50<br><bp< td=""><td></td><td>3<br/>3<br/>3</td><td>1<br/>3<br/>3</td><td>1<br/>3<br/>3</td><td>0<br/>0</td><td>1<br/>3</td><td></td><td>0<br/>0</td><td>1<br/>3</td><td>33</td><td></td><td></td><td>3<br/>3</td><td>3<br/>3</td><td>0<br/>0</td><td></td><td>1<br/>3</td><td></td></bp<> |                        | 3<br>3<br>3                                    | 1<br>3<br>3                | 1<br>3<br>3                | 0<br>0                | 1<br>3                     |                            | 0<br>0                              | 1<br>3                     | 33                           |        |        | 3<br>3      | 3<br>3                | 0<br>0                     |                            | 1<br>3           |             |
| Acetic aldehyde<br>CH <sub>3</sub> -CHO                                                                                    | 100                       | bp                                                                                                                                                                                                                                                                                                | 1                      | 1                                              | 0                          | 0                          | 0                     | 0                          | 0                          | 0                                   | 0                          | 0                            | 0      | 0      | 0           | 0                     | 0                          | 0                          | 0                | 0           |
| Acetic anhydride<br>(CH <sub>3</sub> -CO) <sub>2</sub> O                                                                   | all<br>100<br>100         | 20<br>60<br>bp                                                                                                                                                                                                                                                                                    | 1<br>3<br>3            | 0                                              | 0<br>0<br>0                | 0<br>0<br>0                | 0                     | 1<br>3                     | 0                          | 0<br>0<br>0                         | 1                          | 1                            | 3      | 0<br>1 | 0<br>1      | 1<br>1<br>1           | 0<br>0<br>0                | 0<br>0<br>0                | 0<br>1<br>3      | 0<br>0<br>0 |
| Acetic anilide<br>(Antifebrine)                                                                                            |                           | <114                                                                                                                                                                                                                                                                                              | 0                      | 0                                              | 0                          | 0                          | 0                     | 0                          | 0                          | 0                                   | 0                          | 0                            | 0      | 0      |             | 0                     | 0                          | 0                          | 0                | 0           |
| Acetone<br>CH <sub>3</sub> COCH <sub>3</sub>                                                                               | 100                       | bp                                                                                                                                                                                                                                                                                                | 1                      | 0                                              | 0                          | 0                          | 0                     | 0                          | 0                          | 0                                   | 0                          | 0                            | 0      | 0      | 0           | 0                     | 0                          | 0                          | 0                | 0           |
| Acetyl chloride<br>CH <sub>3</sub> COCI                                                                                    |                           | 20                                                                                                                                                                                                                                                                                                | 1                      | 1                                              | 1                          | 1                          | 1                     | 1                          | 0                          | 0                                   | 1                          | 1                            |        | 1      | 1           | 1                     |                            | 0                          | 1                | 0           |
| Acetylene dr<br>H-C=C-H dr                                                                                                 |                           | 20<br>200                                                                                                                                                                                                                                                                                         | 0<br>1                 | 0<br>0                                         | 0<br>0                     | 0<br>0                     | 0<br>0                | 0<br>0                     | 0<br>0                     | 0<br>0                              | 0<br>0                     | 3<br>3                       | 3<br>3 | 3<br>3 | 3<br>3      | 0<br>3                | 0<br>0                     | 0<br>0                     | 0<br>1           | 3<br>3      |
| $\begin{array}{c} \textbf{Acetylene dichloride } hy \\ \textbf{C}_2\textbf{H}_2\textbf{CI}_2 & dr \end{array}$             | 5<br>100                  | 20<br>20                                                                                                                                                                                                                                                                                          | 0                      | Р                                              | Р                          | Р                          | 0                     | 0                          | 0                          |                                     | 0                          |                              |        |        |             | 0                     |                            |                            | 1<br>0           |             |
| Acetylen tetrachloride<br>CHCl <sub>2</sub> –CHCl <sub>2</sub>                                                             | 100<br>100                | 20<br>bp<br>bp                                                                                                                                                                                                                                                                                    | 0<br>0<br>1            | 0                                              | 0<br>0                     | 0<br>0                     |                       |                            |                            | 0<br>0                              |                            |                              |        |        | 0<br>1<br>3 | 0<br>0<br>1           | 0<br>1                     |                            | 0<br>3<br>3      |             |
| Adipic acid<br>HOOC(CH <sub>2</sub> ) <sub>4</sub> COOH                                                                    | all                       | 200                                                                                                                                                                                                                                                                                               | 0                      | 0                                              | 0                          | 0                          | 0                     | 0                          | 0                          | 0                                   | 0                          |                              |        |        |             | 0                     | 0                          | 0                          | 0                | 0           |
| Alcohol<br>see ethyl or methyl alcohol                                                                                     |                           |                                                                                                                                                                                                                                                                                                   |                        |                                                |                            |                            |                       |                            |                            |                                     |                            |                              |        |        |             |                       |                            |                            |                  |             |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                                  |                      |                       |                      |                        |                  |                   |                  |                       |                       |                    | N                                   | later              | ials                         |        |        |             |             |                  |                  |           |        |
|-------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|----------------------|------------------------|------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------|--------|-------------|-------------|------------------|------------------|-----------|--------|
|                                                                                                                         |                      | Concentration         | Temperature          | s                      |                  | ainle<br>steel:   |                  |                       | Nick                  | el al              | loys                                |                    |                              | oppe   |        |             | Ρ           | ure r            | netal            | s         |        |
| Designation<br>Chemical formula                                                                                         | ormula               |                       |                      |                        | els              | steels            | + Mo             | steels 2.4858 / alloy | 8252.4816 / alloy 600 | oy 625             | 819 /alloy                          | oy 400             | ٥٨                           |        |        |             |             |                  |                  | -         |        |
|                                                                                                                         |                      | %                     | С                    | Non-/low- alloy steels | Ferritic steels  | Austenitic steels | Austenitic + Mo  | steels 2.4            | 8252.4816             | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper      | Nickel      | Titanium         | Tantalum         | Aluminium | Silver |
| Allyl alcohol<br>CH <sub>2</sub> CHCH <sub>2</sub> OH                                                                   |                      | 100                   | bp                   |                        |                  | 0                 | 0                | 0                     | 0                     | 0                  | 1                                   | 0                  |                              |        |        |             | 0           |                  |                  |           |        |
| Allyl chloride<br>CH <sub>2</sub> =CHCH <sub>2</sub> CI                                                                 |                      | 100                   | 25                   |                        |                  |                   | 0                | 0                     | 0                     | 0                  |                                     | 0                  |                              |        |        |             | 0           |                  |                  |           |        |
| <b>Alum</b><br>KAI (SO₄)₂                                                                                               | hy<br>hy             | 100<br>10<br>10<br>sa | 20<br>20<br><80      | 1<br>1<br>1            | 1<br>0<br>1<br>3 | 0<br>0<br>0<br>3  | 0<br>0<br>0<br>1 | 0                     | 1                     | 0                  | 0<br>1<br>1<br>3                    |                    | 1<br>1<br>1<br>3             | 1      | 1      | 1<br>1      |             | 0                | 0<br>0<br>0      | 1<br>1    |        |
| Aluminium<br>Al                                                                                                         | me                   |                       | 750                  | 3                      | 3                | 3                 | 3                |                       |                       |                    |                                     | 3                  |                              |        |        |             | 3           | 3                |                  |           |        |
| $\begin{array}{l} \textbf{Aluminium acetate} \\ (\text{CH}_3-\text{COO})_2 \text{Al}(\text{OH}) \text{ hy} \end{array}$ | hy                   | 3<br>sa               | 20                   | 3<br>3                 | 0<br>0           | 0<br>0            | 0<br>0           |                       |                       |                    | 0<br>1                              |                    |                              |        |        |             | 0           | 0<br>0           | 1                |           |        |
| $\underset{\text{AICI}_3}{\text{Aluminium chloride}}$                                                                   | hy                   | 5                     | 20                   | 3                      | 3                | 3                 | Ρ                | 1                     | 1                     | 0                  | 0                                   | 1                  | 3                            | 3      | 1      | 3           | 1           | 0                | 0                | 3         | 1      |
| $\underset{\text{AIF}_3}{\text{Aluminium fluoride}}$                                                                    | hy                   | 10                    | 25                   | 3                      | 3                | 3                 | 3                |                       |                       |                    | 1                                   | 1                  |                              |        |        | 1           | 1           | 0                | 3                | 1         | 1      |
| $\begin{array}{c} \textbf{Aluminium formate} \\ \text{Al} \left(\text{HC00}\right)_{_3} \end{array}$                    |                      |                       |                      | 1                      | 0                | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   |                    |                              |        | 0      | 1           | 0           | 0                | 0                | 0         |        |
| Aluminium hydroxide<br>Al (OH) <sub>3</sub>                                                                             | hy                   | 10                    | 20                   | 1                      | 3                | 0                 | 0                | 0                     |                       | 0                  | 0                                   | 1                  | 0                            |        |        | 0           |             | 0                | 0                | 1         |        |
| $\begin{array}{c} \textbf{Aluminium nitrate} \\ \text{Al(NO}_3)_3 \end{array}$                                          |                      |                       |                      | 0                      | 0                | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |        |        |             |             | 0                | 0                | 1         |        |
| $\begin{array}{c} \textbf{Aluminium oxide} \\ \text{Al}_2 \text{O}_3 \end{array}$                                       |                      |                       | 20                   | 1                      | 1                | 0                 | 0                | 0                     |                       | 0                  | 0                                   | 3                  | 0                            | 0      | 0      | 0           |             |                  | 0                | 3         |        |
| Aluminium potassiun<br>sulphate<br>see alum                                                                             | 1                    |                       |                      |                        |                  |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |             |             |                  |                  |           |        |
| $\begin{array}{c} \textbf{Aluminium sulphate} \\ \text{Al}_2(\text{SO}_4)_3 \end{array}$                                | hy<br>hy             | 10<br>15              | <bp<br>50</bp<br>    | 3<br>3                 | 3<br>3           | 3<br>3            | 0<br>1           | 0                     | 1<br>1                | 0<br>1             | 1<br>1                              | 3<br>1             | 3<br>1                       | 3<br>1 | 3<br>1 | 3<br>1      | 1<br>1      | 0<br>0           | 0<br>0           | 3<br>3    |        |
| <b>Ammonia</b><br>NH <sub>3</sub>                                                                                       | dr<br>hy<br>hy<br>hy | 10<br>2<br>20<br>sa   | 20<br>20<br>40<br>bp | 0<br>0<br>0<br>0       | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0  | 0<br>0<br>0<br>0 | 0<br>0                | 0<br>0<br>1<br>3      | 0<br>0<br>1<br>1   | 0<br>0<br>1<br>1                    | 1<br>0<br>3<br>3   | 0<br>3                       | S<br>S | S<br>S | 0<br>3<br>3 | 3<br>3<br>3 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>1    | 0<br>0 |

(HYDRA®)

# **Resistance table**

| Medium                                                                                           |                |                |                 |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |             |             |             |             |             |             |
|--------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                                                  |                | Concentration  | Temperature     | s                      |                 | ainle<br>steel:   |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |        |             | Р           | ure r       | netal       | s           |             |
| <b>Designation</b><br>Chemical formula                                                           |                | Conce          | Tempe           | alloy steel            | s               | teels             | - Mo            | 358 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | 70                           |                |        |             |             |             |             |             |             |
|                                                                                                  |                | %              | С               | Non-/low- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper      | Nickel      | Titanium    | Tantalum    | Aluminium   | Silver      |
| <b>Ammonia bromide</b><br>NH₄Br                                                                  | hy             | 10             | 25              | 3                      | Р               | Р                 | Р               | 0                     |                       | 0                  | 1                                   |                    |                              |                |        |             |             |             | 0           | 1           |             |
| $\begin{array}{c} \textbf{Ammonium acetate} \\ \text{CH}_3\text{-COONH}_4 \end{array}$           |                |                |                 | 1                      | 0               | 0                 | 0               |                       |                       |                    |                                     |                    |                              |                |        |             |             |             | 0           | 0           |             |
| $\begin{array}{l} \textbf{Ammonium alum} \\ \text{NH}_{4}\text{Al}(\text{SO}_{4})_2 \end{array}$ | hy             | CS             | 20              |                        |                 | 0                 | 0               |                       |                       |                    |                                     |                    |                              |                |        |             |             | 3           | 0           |             |             |
| Ammonium<br>bicarbonate<br>(NH <sub>4</sub> )HCO <sub>3</sub>                                    | hy             |                |                 | 0                      | 0               | 0                 | 0               | 1                     | 3                     |                    |                                     | 3                  | 3                            |                |        | 3           |             |             | 0           | 0           |             |
| Ammonium bifluoride                                                                              | e hy<br>hy     | 10<br>100      | 25<br>20        | 3<br>3                 | 3<br>3          | 3<br>0            | 3<br>0          |                       |                       |                    | 0<br>0                              |                    |                              |                |        |             |             | 3<br>3      | 0<br>0      |             |             |
| Ammonium bromide<br>see ammonia bromide                                                          | э              |                |                 |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |             |             |             |
| Ammonium carbonate<br>NH <sub>4</sub> ) <sub>2</sub> CO <sub>3</sub>                             | e hy<br>hy     | 1<br>50        | 20<br>bp        | 0<br>0                 | 0<br>0          | 0<br>0            | 0<br>0          | 0<br>0                | 0<br>0                | 0<br>0             | 1<br>1                              | 0<br>0             | 1<br>1                       |                |        | 1<br>1      | 1           |             | 0<br>0      | 0<br>0      | 0<br>0      |
| Ammonium chloride<br>NH <sub>4</sub> Cl                                                          | hy<br>hy<br>hy | 1<br>10<br>50  | 20<br>100<br>bp | 1<br>1<br>1            | P<br>P<br>P     | P<br>P<br>P       | P<br>P<br>P     | 0<br>0<br>0           | 0<br>0<br>1           | 0<br>0<br>0        | 0<br>0<br>1                         | 0<br>1<br>1        | 1<br>1<br>1                  | S<br>S         | S<br>S | 1<br>1<br>1 | 1<br>1<br>1 | 0<br>0<br>0 | 0<br>1<br>1 | 1<br>1<br>1 | 1<br>1<br>1 |
| <b>Ammonium fluoride</b><br>NH <sub>4</sub> F                                                    | hy<br>hy       | 10<br>hg<br>20 | 25<br>70<br>80  | 1<br>3<br>3            | 1               | 0<br>3            | 0<br>3          |                       |                       |                    | 0<br>0                              |                    |                              | 3              | 3      | 3           |             | 1           | 0<br>0      |             |             |
| Ammonium fluosilicate<br>(NH <sub>4</sub> ) <sub>2</sub> SiF <sub>6</sub>                        | e hy           | 20             | 40              | 3                      |                 | 1                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |        |             | 0           |             |             |             |             |
| Ammonium formate<br>HCOONH <sub>4</sub>                                                          | hy<br>hy       | 10<br>10       | 20<br>70        | 1                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |        |             |             | 0           | 0<br>0      | 0<br>0      |             |
| Ammonium hydroxide<br>NH <sub>4</sub> OH                                                         | Ð              | 100            | 20              |                        | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 3                  | 3                            |                |        | 3           | 0           | 0           | 0           | 1           |             |
| $\begin{array}{c} \textbf{Ammonium nitrate} \\ \text{NH}_4 \text{NO}_3 \end{array}$              | hy<br>hy       | 5<br>100       | 20<br>bp        | 3<br>3                 | 0<br>0          | 0<br>0            | 0<br>0          | 0<br>0                | 1                     | 0                  | 0<br>0                              | 3<br>3             | 3                            | 3              | 3      | 3<br>3      |             |             | 0<br>0      | 0<br>0      |             |
| $\begin{array}{c} \textbf{Ammonium oxalate} \\ (\text{COONH}_4)_2 \end{array}$                   | hy<br>hy       | 10<br>10       | 20<br>bp        | 1<br>3                 | 1<br>3          | 0<br>1            | 0<br>0          |                       | 1<br>1                | 0<br>0             | 0                                   | 1<br>1             | 1<br>1                       |                |        | 1<br>1      |             | 0<br>1      | 0<br>0      |             |             |
| Ammonium<br>perchlorate<br>NH <sub>4</sub> CIO <sub>4</sub>                                      | hy             | 10             | 20              |                        | Р               | Ρ                 | Ρ               |                       |                       |                    | 1                                   |                    |                              |                |        |             |             | 0           |             |             |             |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                                       |                |               |                |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |        |        |             |             |           |        |
|------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|----------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|--------|-------------|-------------|-----------|--------|
|                                                                                                                              |                | Concentration | Temperature    | s                      |                 | ainle<br>steel:   |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |        |        | P      | ure r       | netal       | s         |        |
| <b>Designation</b><br>Chemical formula                                                                                       |                | Conce         | Tempe          | alloy steel            | s               | steels            | + Mo            | 358 / al loy          | alloy 600             | oy 625             | 819 /alloy                          | y 400              | λ                            |                |        |        |        |             |             |           |        |
|                                                                                                                              |                | %             | С              | Non-/Iow- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel | Titanium    | Tantalum    | Aluminium | Silver |
| $\begin{array}{l} \textbf{Ammonium persul-}\\ \textbf{phate} \ (\text{NH}_4)\text{S}_2\text{O}_8 \end{array}$                | hy<br>hy       | 5<br>10       | 20<br>25       | 3                      | 0<br>1          | 0<br>1            | 0<br>1          | 0                     | 1                     | 0                  | 0<br>0                              | 3<br>3             | 3<br>3                       | 3              | 3      | 3<br>3 | 3<br>3 | 0<br>0      | 0           | 3         | 3      |
| Ammonium phos-<br>phate NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub>                                                       | hy             | 5             | 25             | 0                      | 1               | 1                 | 0               | 0                     | 1                     | 0                  | 0                                   | 1                  | 1                            |                |        | 3      | 1      | 0           | 0           | 1         |        |
| <b>Ammonium rhodanid</b><br>NH₄CNS                                                                                           | e              |               | 70             |                        | 0               | 0                 | 0               |                       |                       |                    |                                     |                    |                              |                |        |        |        | 0           |             | 0         |        |
| Ammonium sulphate $(NH_4)_2SO_4$                                                                                             | hy<br>hy<br>hy | 1<br>10<br>sa | 20<br>20<br>bp | 0<br>0<br>1            | 0<br>1          | 0<br>1<br>0       | 0<br>0          | 0<br>0                | 1<br>3                | 0                  | 0<br>1<br>3                         | 1<br>1<br>2        | 3<br>3<br>3                  | 3              | 1      | 33     | 1<br>1 | 0<br>3<br>0 | 0<br>0<br>0 | P<br>P    | 1      |
| $\begin{array}{c} \textbf{Ammonium sulphite} \\ (\text{NH}_4)_2 \text{SO}_3 \end{array}$                                     |                | cs<br>sa      | 20<br>bp       |                        | 1<br>3          | 0<br>1            | 0<br>1          | 3<br>3                | 3<br>3                |                    |                                     | 3<br>3             | 3<br>3                       |                |        | 3<br>3 | 3<br>3 | 0<br>0      | 0<br>0      |           |        |
| Ammonium sulphocya<br>see ammonium rhoda                                                                                     | anate<br>nide  |               |                |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |             |             |           |        |
| Amyl acetate<br>CH <sub>3</sub> -COOC <sub>5</sub> H <sub>11</sub>                                                           |                | all<br>100    | 20<br>bp       | 1                      |                 | 1                 | 1               | 1                     | 1<br>0                | 1<br>1             | 1<br>1                              | 1<br>0             | 1<br>0                       |                |        | 1      | 1<br>0 |             | 1           | 1<br>0    |        |
| <b>Amyl alcohol</b><br>C <sub>5</sub> H <sub>11</sub> OH                                                                     |                | 100<br>100    | 20<br>bp       | 0<br>1                 | 0<br>0          | 0<br>0            | 0<br>0          |                       | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0           | 0           | 1         |        |
| <b>Amyl chloride</b><br>CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> CH <sub>2</sub> Cl                                   |                | 100           | bp             | 1                      |                 | Р                 | Ρ               | 0                     | 1                     | 0                  | 0                                   | 1                  | 0                            |                |        | 0      | 1      | 0           | 0           | 3         |        |
| Amyl thiol                                                                                                                   |                | 100           | 160            |                        |                 | 0                 | 0               |                       |                       |                    | 0                                   |                    |                              |                |        |        |        |             |             |           |        |
| $\begin{array}{l} \textbf{Aniline} \\ \textbf{C}_{\text{s}}\textbf{H}_{\text{s}}\textbf{N}\textbf{H}_{\text{2}} \end{array}$ |                | 100<br>100    | 20<br>180      |                        |                 | 0<br>1            | 0<br>1          | 0                     | 1                     | 0                  | 0                                   | 3<br>1             | 3                            | 3              | 3      | 3      | 3      | 0           |             | 0<br>3    | 0<br>0 |
| Aniline chloride $C_6H_5NH_2HCI$                                                                                             | hy<br>hy       | 5<br>5        | 20<br>100      |                        | P<br>P          | P<br>P            | P<br>P          |                       |                       |                    | 0<br>0                              |                    | 3                            |                |        | 3      | 3      | 0<br>0      | 0           | 3         |        |
| Aniline hydrochloride<br>see anilin chloride                                                                                 | 9              |               |                |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |             |             |           |        |
| Aniline sulphate                                                                                                             |                |               | 20             |                        |                 |                   | 0               |                       |                       |                    | 0                                   |                    |                              |                |        |        |        |             |             | 1         |        |
| Aniline sulphite                                                                                                             | hy<br>hy       | 10<br>cs      | 20<br>20       |                        |                 |                   | 0<br>0          |                       | 1                     |                    | 0<br>0                              |                    |                              |                |        |        |        |             |             |           |        |
| Antifreeze<br>Glysantine                                                                                                     |                |               | 20             |                        | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |        |        | 0      | 0           | 0           | 0         |        |

(HYDRA®)

# **Resistance table**

| Medium                                                                                                                                                                |                   |                          |                       |                        |                 |                   |                  |                       |                       |                    | N                                   | later              | ials                         |                |        |        |             |                  |          |           |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|-----------------------|------------------------|-----------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|-------------|------------------|----------|-----------|--------|
|                                                                                                                                                                       |                   | Concentration            | Temperature           | s                      |                 | ainle<br>steel:   |                  |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |        |        | Р           | ure r            | netal    | s         |        |
| <b>Designation</b><br>Chemical formula                                                                                                                                |                   | Conce                    | Tempe                 | alloy stee             | s               | teels             | - Mo             | 58 / alloy            | alloy 600             | y 625              | 19 /alloy                           | y 400              | Ŵ                            |                |        |        |             |                  |          |           |        |
|                                                                                                                                                                       |                   | %                        | С                     | Non-/low- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel      | Titanium         | Tantalum | Aluminium | Silver |
| Antimony<br>Sb                                                                                                                                                        | me                | 100                      | 650                   | 3                      |                 |                   |                  |                       |                       | 0                  | 0                                   |                    |                              |                |        |        |             | 3                |          | 3         |        |
| $\begin{array}{l} \textbf{Antimony trichloride}\\ \text{SbCl}_{3} \end{array}$                                                                                        | dr<br>hy          |                          | 20<br>100             | 0<br>1                 | 3<br>3          | 3<br>3            | 3<br>3           |                       |                       |                    |                                     |                    |                              |                |        |        | 0<br>0      |                  |          | 3<br>3    |        |
| <b>Aqua regia</b><br>3HCl+HNO <sub>3</sub>                                                                                                                            |                   |                          | 20                    | 3                      | 3               | 3                 | 3                |                       | 3                     |                    | 3                                   |                    | 3                            | 3              | 3      | 3      |             | 0                | 0        |           | 1      |
| Arsenic<br>As                                                                                                                                                         |                   |                          | 65<br>110             |                        |                 | 0<br>1            | 0<br>1           |                       |                       |                    |                                     |                    |                              |                |        |        |             |                  |          |           |        |
| <b>Arsenic acid</b><br>H <sub>3</sub> As0 <sub>4</sub>                                                                                                                | hy<br>hy          | 90                       | 20<br>110             | 3                      | 3               | 0<br>3            | 0<br>3           |                       | 3                     |                    |                                     |                    | 3                            |                |        | 3      |             |                  |          | 3         |        |
| Asphalt                                                                                                                                                               |                   |                          | 20                    | 0                      | 0               | 0                 | 0                |                       |                       |                    |                                     |                    | 0                            | 0              | 0      | 0      | 0           |                  |          | 0         |        |
| $\begin{array}{c} \textbf{Azobenzene} \\ \textbf{C}_{_{\!\!6}}\textbf{H}_{_{\!\!5}} \!\!-\!\! N \!=\! N \!-\! \textbf{C}_{_{\!\!6}}\textbf{H}_{_{\!\!5}} \end{array}$ |                   |                          | 20                    |                        | 0               | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |        |        |             | 0                | 0        | 0         |        |
| Baking powder                                                                                                                                                         | mo                |                          |                       | 1                      | 0               | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |        | 1      |             |                  |          | 0         |        |
| <b>Barium carbonate</b><br>BaCO <sub>3</sub>                                                                                                                          |                   |                          | 20                    | 3                      | 0               | 0                 | 0                | 0                     |                       | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      |             | 0                | 0        | 1         |        |
| <b>Barium chloride</b><br>BaCl <sub>2</sub>                                                                                                                           | hy<br>hy          | 5<br>25                  | 20<br>bp              |                        | P<br>P          | P<br>P            | P<br>P           | 1<br>1                | 1<br>1                | 0<br>0             | 0<br>0                              | 1<br>1             | 3                            |                |        | 3      | 1<br>1      | 0<br>0           | 0<br>0   | 3<br>P    |        |
| <b>Barium hydroxide</b><br>Ba(OH) <sub>2</sub>                                                                                                                        | solid<br>hy<br>hy | 100<br>all<br>all<br>100 | 20<br>20<br>bp<br>815 | 0<br>0<br>0<br>0       | 0<br>0<br>0     | 0<br>0<br>0<br>0  | 0<br>0<br>0<br>0 | 0<br>0<br>0           | 1<br>1<br>1           |                    | 0<br>0<br>1                         | 1<br>1             | 0 0                          | 1<br>1         | 0<br>0 | 0<br>0 | 0<br>1<br>1 | 0<br>0<br>0<br>0 |          | 3<br>3    |        |
|                                                                                                                                                                       | hy<br>hy          | cs<br>sa<br>50           | 20<br>bp<br>100       | 0<br>0<br>0            | 0<br>0<br>0     | 0<br>0<br>0       | 0<br>0<br>0      | 0                     | 1                     |                    | 1<br>1                              | 1                  | 0                            | 1              | 0      | 0      | 0<br>0<br>0 | 0<br>0<br>0      |          | 0<br>3    |        |
| <b>Barium nitrate</b><br>Ba(NO <sub>3</sub> ) <sub>2</sub>                                                                                                            | hy                | all                      | bp                    |                        | 0               | 0                 | 0                | 0                     | 1                     | 0                  |                                     |                    | 3                            |                |        | 3      |             | 0                | 0        | 0         |        |
| <b>Barium sulphate</b><br>BaSO <sub>4</sub>                                                                                                                           |                   |                          | 25                    | 0                      | 0               | 0                 | 0                | 0                     |                       | 0                  |                                     | 0                  | 0                            | 0              | 0      | 0      | 1           | 0                | 0        | 0         |        |
| <b>Barium sulphide</b><br>BaS                                                                                                                                         |                   |                          | 25                    |                        | 0               | 0                 | 0                |                       |                       |                    |                                     |                    | 3                            | 1              | 3      | 3      |             |                  |          |           |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                                |                |                |                   |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |             |             |             |             |             |             |
|-----------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                                                                       |                | Concentration  | Temperature       | s                      |                 | ainle<br>steel:   |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |        |             | Ρ           | ure r       | netal       | S           |             |
| Designation<br>Chemical formula                                                                                       |                | Conce          | Tempe             | alloy steel            | s               | steels            | + Mo            | 358 / alloy           | alloy 600             | oy 625             | 819 /alloy                          | y 400              | λ                            |                |        |             |             |             |             |             |             |
|                                                                                                                       |                | %              | С                 | Non-/Iow- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper      | Nickel      | Titanium    | Tantalum    | Aluminium   | Silver      |
| Basic aluminium acet<br>see aluminium acetat                                                                          | at             |                |                   |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |             |             |             |
| Beer                                                                                                                  |                | 100<br>100     | 20<br>bp          | 3<br>3                 | 0<br>0          | 0<br>0            | 0<br>0          | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0<br>0                       | 1<br>1         | 0<br>0 | 1<br>1      | 0<br>0      | 0<br>0      | 0<br>0      | 0<br>0      |             |
| <b>Benzaldehyde</b><br>C <sub>6</sub> H <sub>5</sub> –CHO                                                             | dr             |                | bp                |                        | 0               | 0                 | 0               |                       |                       |                    |                                     | 1                  |                              |                |        |             |             | 1           | 0           | 0           | 0           |
| Benzene                                                                                                               |                | 100<br>100     | 20<br>bp          |                        | 0<br>0          | 0<br>0            | 0<br>0          | 0                     | 0<br>1                | 0<br>1             | 1<br>1                              | 0<br>1             | 0<br>1                       | 0              | 0      |             | 0<br>1      | 0<br>1      | 0<br>0      | 0<br>1      | 1           |
| $\begin{array}{l} \textbf{Benzenesulfonic acid} \\ \textbf{C}_{g}\textbf{H}_{s}\textbf{SO}_{3}\textbf{H} \end{array}$ | hy<br>hy       | 5<br>5         | 40<br>60          | 3<br>3                 | 0<br>3          | 0<br>1            | 0<br>1          |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |             |             |             |
| Benzine                                                                                                               |                | 100            | 25                |                        | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 1           |             | 0           |             | 1           |             |
| <b>Benzoic acid</b><br>C <sub>6</sub> H <sub>5</sub> COOH                                                             | hy<br>hy       | all<br>all     | 20<br>bp          | 1<br>3                 | 0<br>0          | 0<br>0            | 0<br>0          | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0<br>0                       | 3              | 0<br>0 | 0<br>0      | 0<br>0      | 0<br>0      | 0<br>0      | 0<br>3      |             |
| <b>Benzyl alcohol</b><br>C <sub>6</sub> H <sub>5</sub> –CH <sub>2</sub> OH                                            |                | all            | 20                | 1                      | 1               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0           | 0           | 0           |             |             |             |
| <b>Biphenyl</b><br>C <sub>6</sub> H <sub>5</sub> –C <sub>6</sub> H <sub>5</sub>                                       |                | 100<br>100     | 20<br>400         | 0<br>0                 | 0<br>0          | S<br>S            | S<br>S          | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0                            | 0              | 0      | 0<br>0      | 0<br>0      | 0<br>0      | 0<br>0      | 0<br>0      |             |
| Blood                                                                                                                 |                |                | 20                | 3                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0           | 0           | 0           |             |             |             |
| Boiled oil                                                                                                            |                |                | 20                | 1                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0           | 0           | 0           |             | 0           |             |
| Borax<br>Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub>                                                                | hy<br>hy       | cs<br>sa       |                   | 1<br>3                 | 0<br>0          | 0<br>0            | 0<br>0          |                       |                       |                    |                                     |                    | 0                            | 0              | 0      | 0           |             | 0<br>0      | 0<br>0      | 0<br>1      |             |
| <b>Boric acid</b><br>H <sub>3</sub> BO <sub>3</sub>                                                                   | hy<br>hy<br>hy | 50<br>50<br>70 | 100<br>150<br>150 | 3<br>3<br>3            | 0<br>1<br>1     | 0<br>0<br>1       | 0<br>0<br>1     | 0<br>0<br>0           | 1<br>1<br>1           | 0<br>0<br>0        | 0<br>0<br>0                         | 1<br>1<br>1        | 0                            | 1<br>1<br>1    | 1      | 1<br>1<br>1 | 1<br>1<br>1 | 0<br>0<br>0 | 0<br>0<br>0 | 1<br>1<br>1 | 1<br>0<br>0 |
| <b>Boron</b><br>B                                                                                                     |                |                | 20<br>900         | 0<br>0                 | 0               | 0                 | 0               |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |             |             |             |
| <b>Bromine</b><br>Br                                                                                                  | dr<br>mo       | 100<br>100     | 20<br>20          | P<br>P                 | P<br>P          | P<br>P            | P<br>P          | 1                     | 0<br>3                | 0                  | 0<br>3                              | 0<br>0             | 1                            | 0<br>3         | 0<br>1 | 0<br>3      | 0<br>0      | 3<br>0      |             | 3<br>3      | 0<br>0      |
| Bromine water                                                                                                         |                | 0.03<br>1      | 20<br>20          |                        | P<br>P          | P<br>P            | P<br>P          |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |             |             |             |

(HYDRA®)

# **Resistance table**

| Medium                                                                                                 |          |                     |             |                        |                  |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |        |        |                  |                  |           |        |
|--------------------------------------------------------------------------------------------------------|----------|---------------------|-------------|------------------------|------------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|--------|------------------|------------------|-----------|--------|
|                                                                                                        |          | Concentration       | Temperature | s                      |                  | ainle<br>steels   |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |        |        | Р      | ure r            | netal            | s         |        |
| Designation<br>Chemical formula                                                                        |          | Conce               | Temp        | alloy stee             | sla              | steels            | + Mo            | 358 / alloy           | alloy 600             | oy 625             | 319 /alloy                          | oy 400             | Λc                           |                |        |        |        |                  |                  |           |        |
|                                                                                                        |          | %                   | С           | Non-/low- alloy steels | Ferritic steels  | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel | Titanium         | Tantalum         | Aluminium | Silver |
| Bromoform<br>CHBr <sub>3</sub>                                                                         | dr<br>mo |                     | 20          | 0<br>3                 | 0<br>0           | 0<br>0            | 0<br>0          | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             |                              |                | 0<br>0 | 0<br>0 |        |                  |                  | 3<br>3    |        |
| <b>1,3-Butadiene</b><br>CH <sub>2</sub> =CHCH=CH <sub>2</sub>                                          |          |                     |             |                        |                  |                   |                 | 0                     | 0                     | 0                  |                                     | 0                  |                              |                |        | 0      | 0      |                  |                  | 0         |        |
| $\begin{array}{c} \textbf{Butane} \\ \textbf{C}_4\textbf{H}_{10} \end{array}$                          |          | 100<br>100          | 20<br>120   | 0                      | 0<br>1           | 0<br>0            | 0<br>0          | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 1      | 0      |                  |                  | 1         |        |
| Butanol<br>CHCHCH                                                                                      |          | 100                 | 20          | 0                      | 0                | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0                | 0                | 0         | 0      |
| CH <sub>2</sub> <sup>3</sup> OH                                                                        |          | 100                 | bp          | 0                      | 0                | 0                 | 0               |                       | 0                     |                    | 0                                   | 0                  |                              |                |        |        |        | 0                | 0                | 0         |        |
| Butter                                                                                                 |          |                     | 20          | 3                      | 0                | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   |                    |                              |                |        | 3      |        |                  |                  | 0         |        |
| Buttermilk                                                                                             |          |                     | 20          | 3                      | 0                | 0                 | 0               | 0                     |                       | 0                  | 0                                   | 3                  |                              |                | 3      | 3      |        |                  |                  | 0         |        |
| $\begin{array}{l} \textbf{Butylacetate} \\ \textbf{CH}_{3}\textbf{COOC}_{4}\textbf{H}_{9} \end{array}$ |          |                     | 20<br>bp    | 1<br>1                 | 0                | 0<br>0            | 0<br>0          | 0<br>0                |                       | 0<br>0             | 0<br>0                              | 1<br>0             | 0<br>0                       | 0              | 0      | 0<br>0 |        | 0<br>0           | 0<br>0           | 0<br>0    | 0      |
| Butyric acid<br>CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -COOH                                | hy<br>hy | cs<br>sa            | 20<br>bp    | 3<br>3                 | 0<br>3           | 0<br>3            | 0<br>0          | 1<br>1                | 3<br>3                | 0<br>0             | 0<br>0                              | 1<br>1             |                              |                |        |        | 3<br>3 |                  |                  | 0<br>1    |        |
| <b>Cadmium</b><br>Cd                                                                                   | me       |                     |             |                        |                  | 3                 | 3               |                       |                       |                    |                                     |                    |                              |                |        |        |        |                  |                  |           |        |
| <b>Calcium</b><br>Ca                                                                                   | me       |                     | 850         | 3                      |                  | 3                 | 3               |                       |                       |                    |                                     |                    |                              |                |        |        |        |                  |                  |           |        |
| <b>Calcium bisulphite</b><br>CaSO <sub>3</sub>                                                         |          | cs<br>sa            | 20<br>bp    | 3<br>3                 | 3<br>3           | 0<br>3            | 0<br>0          |                       |                       |                    |                                     |                    | 1                            | 3              | 1      | 0      |        | 0<br>0           |                  |           |        |
| <b>Calcium carbonate</b><br>CaCO <sub>3</sub>                                                          |          |                     | 20          | 1                      | 0                | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0                | 0                | 0         |        |
| $\begin{array}{c} \textbf{Calcium chlorate} \\ \textbf{Ca(CIO}_3)_2 \end{array}$                       | hy<br>hy | 10<br>10            | 20<br>100   |                        | Р<br>3           | Р<br>3            | P<br>P          | 1<br>1                | 1<br>1                | 1<br>1             | 1                                   | 1<br>1             | 3<br>3                       |                |        | 1<br>1 | 1<br>1 |                  | 0<br>0           |           |        |
| <b>Calcium chloride</b><br>CaCl <sub>2</sub>                                                           | hy<br>hy | 5<br>10<br>cs<br>sa | 100<br>20   | 3<br>3<br>3<br>3       | P<br>P<br>P<br>3 | P<br>P<br>P       | P<br>P<br>P     | 0<br>0<br>0           | 0<br>0<br>0           | 0<br>0<br>0        | 0<br>0<br>0<br>0                    | 0<br>1<br>3        | 0<br>0<br>0                  | 3<br>3<br>3    | 1      | 1<br>0 | 0<br>1 | 0<br>0<br>0<br>P | 0<br>0<br>0<br>0 | 3 3 3 3   |        |
| <b>Calcium hydroxide</b><br>Ca(OH) <sub>2</sub>                                                        |          |                     |             | 0                      | 0                | 0                 | 0               | 1                     | 1                     | 0                  | 0                                   | 1                  | 0                            | 0              | 0      | 1      | 1      | 0                | 0                | 3         |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                      |                      |                         |                          |                        |                 |                   |                  |                       |                       |                    | N                                   | later              | ials                         |                |        |             |             |             |                  |                  |        |
|-------------------------------------------------------------|----------------------|-------------------------|--------------------------|------------------------|-----------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|-------------|-------------|-------------|------------------|------------------|--------|
|                                                             |                      | Concentration           | Temperature              | s                      |                 | ainle<br>steel:   |                  |                       | Nick                  | cel al             | loys                                |                    |                              | oppe<br>alloys |        |             | Ρ           | ure r       | netal            | s                |        |
| <b>Designation</b><br>Chemical formula                      |                      | Concel                  | Tempe                    | alloy steel            | s               | steels            | - Mo             | 858 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | y.                           |                |        |             |             |             |                  |                  |        |
|                                                             |                      | %                       | С                        | Non-/low- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper      | Nickel      | Titanium    | Tantalum         | Aluminium        | Silver |
| Calcium hypochlorite<br>Ca(OCI) <sub>2</sub>                | hy<br>hy             | 2<br>cs                 | 20                       | 3<br>3                 | 3<br>3          | 3<br>3            | P<br>P           | 0                     | 3                     | 0                  | 0<br>1                              | 3                  | 3                            |                |        | 3           | 3           | 0           | 0<br>0           | 3<br>3           |        |
| <b>Calcium nitrate</b><br>Ca(NO <sub>3</sub> ) <sub>2</sub> |                      | all                     | 20<br>100                | 3<br>3                 | 0<br>0          | 0<br>0            | 0<br>0           | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             |                              |                |        |             |             | 0<br>0      |                  | 0<br>0           |        |
| <b>Calcium oxalate</b><br>(COO) <sub>2</sub> Ca             | mo                   |                         | 20                       | 1                      | 0               | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      |             |             | 0           | 0                | 3                |        |
| <b>Calcium oxide</b><br>CaO                                 |                      |                         | 20                       | 0                      | 0               | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0           | 0           | 0           |                  | 3                |        |
| <b>Calcium sulphate</b><br>CaSO <sub>4</sub>                | mo<br>mo             |                         | 20<br>bp                 | 1<br>1                 | 0<br>0          | 0<br>0            | 0<br>0           | 0<br>0                |                       | 0<br>0             | 0<br>0                              | 0<br>0             | 0<br>0                       | 0<br>0         | 0<br>0 | 0<br>0      | 0<br>0      | 0<br>0      | 0<br>0           | 1<br>1           |        |
| <b>Calcium sulphite</b><br>CaSO <sub>3</sub>                | hy<br>hy             | cs<br>sa                |                          | 0<br>0                 | 0<br>0          | 0<br>0            | 0<br>0           |                       |                       |                    |                                     |                    |                              |                |        | 1<br>1      |             | 0<br>0      | 0<br>0           | 1<br>1           |        |
| <b>Carbolic acid</b> $C_6H_5(OH)$                           | hy                   | 90                      | 20<br>bp<br>bp           | 0<br>3<br>3            | 0<br>3<br>3     | 0<br>3<br>3       | 0<br>0<br>0      | 0                     | 1                     | 0                  | 0<br>1<br>1                         | 1<br>0<br>0        | 0                            |                |        | 0           | 1<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0      | 0<br>3<br>3      |        |
| <b>Carbon dioxide</b><br>CO <sub>2</sub>                    | dr<br>dr<br>mo<br>mo | 100<br>100<br>20<br>100 | <540<br>1000<br>25<br>25 | 0<br>3<br>1<br>3       | 1<br>1<br>1     | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>3<br>0<br>1      | 0<br>0<br>0        | 0<br>0<br>0                         | 0<br>0<br>1        | 0                            | 3              | 1      | 3<br>1<br>0 | 0<br>1      | 0           | 0<br>0<br>0<br>0 | 3<br>3           |        |
| <b>Carbon monoxide</b><br>CO                                |                      | 100<br>100              | 20<br><540               | 0<br>3                 | 0<br>0          | 0<br>0            | 0<br>0           |                       | 0<br>3                | 0                  | 0<br>0                              | 0<br>1             |                              |                |        | 0<br>3      | 0<br>3      | 0<br>0      | 0<br>0           | 0<br>1           | 0<br>3 |
| <b>Carbon<br/>tetrachloride</b><br>CCl <sub>4</sub>         | dr<br>dr<br>mo<br>mo |                         | 20<br>bp<br>25<br>bp     | 0<br>1<br>1<br>3       | 0<br>0<br>1     | 0<br>0<br>1       | 0<br>0<br>1<br>1 | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0<br>0                         | 0<br>0<br>0        | 0<br>0                       | 0<br>0         | 0<br>0 | 0<br>0<br>1 | 0<br>0<br>0 | 0<br>0<br>0 | 0                | 0<br>3<br>3<br>3 |        |
| Carbonic acid<br>see carbon dioxide                         |                      |                         |                          |                        |                 |                   |                  |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |                  |                  |        |
| Caustic-soda solution<br>see sodium hydroxide               |                      |                         |                          |                        |                 |                   |                  |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |                  |                  |        |
| Chilean nitrate<br>see sodium nitrate                       |                      |                         |                          |                        |                 |                   |                  |                       |                       |                    |                                     |                    |                              |                |        |             |             |             |                  |                  |        |
| <b>Chloral</b><br>CCICHO                                    |                      |                         | 20                       |                        |                 |                   |                  |                       |                       |                    | 0                                   |                    |                              |                |        |             |             |             | 0                | 3                |        |

328 WITZENMANN

(HYDRA®)

# **Resistance table**

| Medium                                                                                                               |                                  |                                      |                                        |                        |                 |                                      |                                      |                       |                       |                    | N                                   | later              | ials                         |                    |                    |         |        |                            |                            |                       |        |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|----------------------------------------|------------------------|-----------------|--------------------------------------|--------------------------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------------------|--------------------|---------|--------|----------------------------|----------------------------|-----------------------|--------|
|                                                                                                                      |                                  | Concentration                        | Temperature                            | s                      |                 | tainle<br>steel                      |                                      |                       | Nick                  | el al              | loys                                |                    |                              | oppe               |                    |         | Р      | ure r                      | netal                      | s                     |        |
| <b>Designation</b><br>Chemical formula                                                                               |                                  | Conce                                | Tempe                                  | alloy stee             | s               | steels                               | - Mo                                 | 358 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | 70                           |                    |                    |         |        |                            |                            |                       |        |
|                                                                                                                      |                                  | %                                    | С                                      | Non-/Iow- alloy steels | Ferritic steels | Austenitic steels                    | Austenitic + Mo                      | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac             | Bronze             | Copper  | Nickel | Titanium                   | Tantalum                   | Aluminium             | Silver |
| Chloramine                                                                                                           |                                  |                                      |                                        | 3                      | 3               | 1                                    | 0                                    | 0                     |                       | 0                  | 0                                   | 0                  |                              |                    |                    |         |        |                            |                            |                       |        |
| <b>Chloric acid</b><br>HCIO <sub>3</sub>                                                                             | hy                               |                                      | 20                                     | 3                      | 3               | 3                                    | 3                                    | 0                     |                       |                    | 0                                   |                    |                              |                    |                    |         |        | 0                          | 0                          | 3                     | 3      |
| Chlorinated lime<br>see calcium hypochlo                                                                             | orite                            |                                      |                                        |                        |                 |                                      |                                      |                       |                       |                    |                                     |                    |                              |                    |                    |         |        |                            |                            |                       |        |
| Chlorine<br>Cl <sub>a</sub>                                                                                          | dr<br>dr                         | 100<br>100                           | 200<br>300                             | 03                     | 03              | 0<br>3                               | 0                                    |                       | 0                     | 0<br>0             | 0<br>0                              | 0<br>0             | 0                            | 0                  | 0                  | 0       | 0      | 1                          | 0                          | 0                     | 0      |
|                                                                                                                      | dr<br>mo                         | 100                                  | 400<br>20                              | 3                      | 333             | 3                                    | 3                                    | 0                     | ŏ                     | ŏ                  | 0                                   | Ö                  |                              |                    |                    |         |        | 0                          | 0                          | 3                     |        |
|                                                                                                                      | mo                               |                                      | 150                                    | 3                      | 3               | 3                                    | 3                                    |                       |                       |                    | 0                                   |                    |                              |                    |                    |         |        | 0                          | 0                          | 3                     |        |
|                                                                                                                      | hy                               | 0.5                                  | 20                                     | 3                      | 3               | 3                                    | 3                                    |                       |                       |                    | 1                                   |                    |                              |                    | 3                  |         |        | 0                          | 0                          |                       |        |
| $\begin{array}{c} \textbf{Chloroacetic acid} \\ \text{CH}_{_2}\text{CH-COOH} \end{array}$                            | hy                               | all<br>30                            | 20<br>80                               | 3<br>3                 | 3<br>3          | 3<br>3                               | L<br>3                               | 3                     | 3                     | 1                  | 1<br>0                              | 3                  | 3                            | 3                  | 3                  | 3<br>3  | 1      | 0<br>0                     | 0<br>0                     | 3<br>3                |        |
| $\begin{array}{c} \textbf{Chlorobenzene} \\ \textbf{C}_{_{\text{B}}}\textbf{H}_{_{\text{S}}}\textbf{Cl} \end{array}$ | dr<br>mo                         | 100                                  | 20                                     | 0<br>0                 | 0<br>P          | 0<br>P                               | 0<br>P                               | 0                     | 0                     | 0                  | 0<br>0                              | 0                  | 0                            | 0                  | 0                  | 1       | 1      | 0                          | 0                          | 1                     |        |
| $\begin{array}{c} \textbf{Chloroethane} \\ \textbf{C}_{_{2}}\textbf{H}_{_{5}}\textbf{Cl} \end{array}$                |                                  |                                      |                                        |                        |                 |                                      |                                      |                       |                       |                    |                                     |                    |                              |                    |                    |         |        |                            |                            |                       |        |
| <b>Chloroform</b><br>CHCl <sub>3</sub>                                                                               | dr<br>mo                         |                                      |                                        | 1<br>3                 | 1<br>P          | 1<br>P                               | 1<br>P                               | 0<br>0                | 0<br>0                | 0<br>0             | 0                                   | 0<br>0             | 0                            | 0                  | 0                  | 0       | 0      | 0<br>0                     |                            | 0<br>3                |        |
| $\begin{array}{c} \textbf{Chloronaphthaline} \\ \textbf{C}_{_{10}}\textbf{H}_{_{7}}\textbf{Cl} \end{array}$          |                                  |                                      |                                        | 0                      | 0               | 0                                    | 0                                    | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0                  | 0                  | 0       |        | 0                          | 0                          | 0                     |        |
| <b>Chlorophenol</b><br>C <sub>6</sub> H <sub>4</sub> (OH)Cl                                                          |                                  |                                      |                                        | 1                      | 0               | 0                                    | 0                                    |                       |                       |                    | 0                                   |                    |                              |                    |                    |         |        |                            |                            |                       |        |
| <b>Chlorosulphon acid</b><br>HOSO <sub>2</sub> CI                                                                    | hy<br>mo                         | 100                                  | 20<br>20                               | 0<br>3                 | 0<br>3          | 0<br>3                               | 0<br>1                               | 0<br>1                | 0<br>1                | 0<br>1             | 0                                   | 0                  |                              |                    |                    | 0<br>3  | 0<br>3 | 0<br>3                     | 0<br>0                     | 0<br>3                | 3<br>3 |
| <b>Chrome alum</b> $KCr(SO_4)_2$                                                                                     | hy                               | 1<br>cs<br>sa                        | 20                                     | 3<br>3<br>3            | 3<br>3<br>3     | 0<br>1<br>3                          | 0<br>0<br>3                          |                       | 0                     |                    |                                     | 1<br>0<br>1        |                              | 3<br>3             |                    |         | 1<br>3 | 0<br>0<br>0                |                            | 1<br>3<br>3           |        |
| Chromic acid<br>Cr <sub>2</sub> O<br>(H <sub>2</sub> CrO <sub>4</sub> )                                              | hy<br>hy<br>hy<br>hy<br>hy<br>hy | 5<br>5<br>10<br>10<br>10<br>50<br>60 | 20<br>90<br>20<br>65<br>bp<br>bp<br>20 | 3333333                | 330333<br>33333 | 0<br>3<br>0<br>3<br>3<br>3<br>3<br>3 | 0<br>3<br>0<br>3<br>3<br>3<br>3<br>3 | 1<br>1<br>1<br>3<br>1 | 3<br>3<br>3<br>3<br>3 | 0                  | 0<br>1<br>0<br>0<br>3               | 33333333           | 3333333                      | <u>າ າ າ າ າ າ</u> | <u>າ</u> າ າ າ າ າ | 3333333 | 333333 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 1<br>1<br>3<br>3<br>3 | 0      |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                                 |                |               |                     |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |        |             |             |             |           |        |
|------------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|-------------|-------------|-------------|-----------|--------|
|                                                                                                                        |                | Concentration | Temperature         | s                      |                 | ainle<br>steel:   |                 |                       | Nick                  | cel al             | loys                                |                    |                              | oppe<br>alloys |        |        | Ρ           | ure r       | netal       | s         |        |
| <b>Designation</b><br>Chemical formula                                                                                 |                | Conce         | Tempe               | alloy steel            | s               | steels            | - Mo            | 858 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | Ŋ                            |                |        |        |             |             |             |           |        |
|                                                                                                                        |                | %             | С                   | Non-/Iow- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel      | Titanium    | Tantalum    | Aluminium | Silver |
| Chromic-acid anhydri<br>see chromium oxide                                                                             | ide            |               |                     | -                      |                 |                   | _               |                       |                       |                    |                                     |                    |                              |                |        |        |             |             |             |           |        |
| <b>Chromium oxide</b><br>CrO <sub>3</sub>                                                                              |                |               |                     | 0                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0           | 0           | 0           | 0         |        |
| $\begin{array}{c} \textbf{Chromium sulphate} \\ \text{Cr}_2(\text{SO}_4)_3 \end{array}$                                |                | cs<br>sa      |                     | 3<br>3                 | 0<br>0          | 0<br>1            | 0<br>1          |                       | 0<br>1                | 0<br>0             | 0<br>0                              | 0<br>0             |                              |                |        |        | 0<br>0      |             |             |           |        |
| Cider                                                                                                                  |                |               | 20<br>bp            | 3<br>3                 | 0<br>0          | 0<br>0            | 0<br>0          | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             |                              |                |        |        | 0<br>0      | 0<br>0      | 0<br>0      | 1<br>1    | 0<br>0 |
| $\begin{array}{c} \textbf{Citric acid} \\ \textbf{C}_{_{\!\!6}}\textbf{H}_{_{\!\!8}}\textbf{O}_{_{\!\!7}} \end{array}$ | hy<br>hy       | all<br>all    | <80<br>bp           | 3<br>3                 | 3<br>3          | 0<br>3            | 0<br>0          |                       | 0<br>0                |                    | 0<br>0                              |                    |                              |                |        |        |             |             |             |           |        |
| <b>Combustion gases</b> free from S or $H_2SO_4$                                                                       | and Cl         |               | ≤400                | 0                      | 0               | 0                 | 0               |                       |                       |                    | 0                                   |                    |                              |                |        |        |             |             |             |           |        |
| with S or H <sub>2</sub> SO <sub>4</sub>                                                                               | and Cl         |               | >adp<br>and<br>≤400 | 0                      | 0               | 0                 | 0               |                       |                       |                    | 0                                   |                    |                              |                |        |        |             |             |             |           |        |
| <b>Copper (II) acetate</b><br>CU <sub>2</sub> (CH <sub>3</sub> COO) <sub>4</sub>                                       | hy<br>hy       |               | 20<br>bp            | 3<br>3                 | 0<br>0          | 0<br>0            | 0<br>0          | 0                     | 1                     | 0                  | 0                                   | 1                  | 3                            |                | 3<br>3 | 3      | 1           | 0<br>0      | 0           | 3<br>3    | 1      |
| <b>Copper (II) chloride</b><br>CuCl <sub>2</sub>                                                                       | hy<br>hy       | 1<br>cs       | 20                  | 3<br>3                 | 3<br>3          | Р<br>3            | Р<br>3          | 0<br>3                | 3<br>3                |                    | 1<br>0                              | 3<br>3             | 3                            |                |        | 3<br>3 | 3<br>3      | 0<br>0      | 0<br>0      | 3<br>3    |        |
| <b>Copper (II) nitrate</b><br>Cu(NO <sub>3</sub> ) <sub>2</sub>                                                        | hy<br>hy<br>hy | 1<br>50<br>cs | 20<br>bp            |                        | 0<br>0<br>0     | 0<br>0<br>0       | 0<br>0<br>0     | 0<br>0                | 3<br>3<br>3           |                    | 0<br>1<br>1                         | 3<br>3<br>3        | 3<br>3                       |                |        | 3<br>3 | 3<br>0<br>3 | 0<br>0<br>0 | 0<br>3<br>0 | 3<br>3    |        |
| <b>Copper (II) sulphate</b><br>CuSO <sub>4</sub>                                                                       | hy<br>hy       | cs<br>sa      |                     | 3<br>3                 | 0<br>1          | 0<br>0            | 0<br>0          | 0<br>0                | 3<br>3                |                    | 0<br>0                              | 3<br>3             | 3                            |                |        | 3<br>3 | 3<br>3      | 0<br>0      | 0<br>0      | 3<br>3    | 0      |
| <b>Cresol</b><br>C <sub>6</sub> H <sub>4</sub> (CH <sub>3</sub> )OH                                                    |                | all<br>all    | 20<br>bp            | 3<br>3                 | 1<br>1          | 0<br>1            | 0<br>0          |                       | 0<br>0                | 0<br>0             | 1                                   | 0<br>0             |                              |                |        |        | 0<br>0      | 0<br>0      |             | 0<br>3    | 0<br>0 |
| <b>Crotonaldehyde</b><br>CH <sub>3</sub> -CH=CH-CHO                                                                    |                |               | 20<br>bp            | 3                      |                 | 0<br>1            | 0<br>0          | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0<br>0                       | 0<br>0         |        | 0      |             |             |             | 0<br>0    |        |
| Cyclohexane (CH2)6                                                                                                     |                |               |                     | 0                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0           | 0           | 0           | 0         |        |
| Diammonium phosph<br>see ammonium phos                                                                                 |                |               |                     |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |             |             |             |           |        |

(HYDRA®)

# **Resistance table**

| Medium                                                                                                      |                |               |                |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |        |        |          |             |             |        |
|-------------------------------------------------------------------------------------------------------------|----------------|---------------|----------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|--------|----------|-------------|-------------|--------|
|                                                                                                             |                | Concentration | Temperature    | s                      |                 | ainle<br>steels   |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloy: |        |        | Р      | ure r    | netal       | S           |        |
| <b>Designation</b><br>Chemical formula                                                                      |                | Conce         | Tempe          | alloy steel            | s               | steels            | + Mo            | 358 / al loy          | alloy 600             | oy 625             | 819 /alloy                          | y 400              | у                            |                |        |        |        |          |             |             |        |
|                                                                                                             |                | %             | С              | Non-/Iow- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel | Titanium | Tantalum    | Aluminium   | Silver |
| $\begin{array}{c} \textbf{Dibromethane} \\ \textbf{CH}_2\textbf{Br} - \textbf{CH}_2\textbf{Br} \end{array}$ |                |               |                | 1                      |                 | 0                 | 0               |                       |                       |                    |                                     |                    |                              |                |        |        | 0      |          |             | 3           |        |
| $\begin{array}{c} \textbf{Dichlorflourmethane} \\ \textbf{CF}_2\textbf{Cl}_2 \end{array}$                   | dr<br>dr<br>mo |               | bp<br>20<br>20 |                        |                 | 0<br>0<br>0       | 0<br>0<br>0     | 0<br>0<br>0           | 0<br>0<br>0           | 0<br>0<br>0        | 0<br>0<br>0                         | 0<br>0<br>0        |                              |                |        |        |        |          | 0<br>0<br>0 | 0<br>0<br>0 |        |
| Dichloroethane<br>CH <sub>2</sub> CI–CH <sub>2</sub> CI                                                     | dr<br>mo       | 100<br>100    | 20<br>20       | 0                      | P<br>P          | P<br>P            | P<br>P          | 1                     | 0                     |                    |                                     |                    | 0                            | 1              |        | 1      |        | 0        | 0<br>0      | 0           | 1<br>1 |
| Dichloroethylene<br>see acethylene dichlor                                                                  | ide            |               |                |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |             |             |        |
| Diethyl ether $(C_2H_5)_20$                                                                                 |                |               |                | 0                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 1                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0        | 0           | 0           | 0      |
| Ethane<br>CH <sub>3</sub> -CH <sub>3</sub>                                                                  |                |               | 20             | 0                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0        | 0           | 0           | 0      |
| Ether<br>see diethyl ether                                                                                  |                |               |                |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |             |             |        |
| Ethereal oils                                                                                               |                |               | 20             | 1                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0        | 0           | 0           | 0      |
| <b>Ethyl alcohol</b><br>C <sub>2</sub> H <sub>5</sub> OH                                                    |                | all<br>all    | 20<br>bp       | 0<br>1                 | 0<br>0          | 0<br>0            | 0<br>0          | 0<br>0                | 0<br>0                | 0                  | 0<br>0                              | 0<br>0             | 0<br>0                       | 0<br>0         | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0   | 0<br>0      | 0<br>0      | 0<br>0 |
| Ethylbenzene $C_6H_5-C_2H_5$                                                                                |                |               |                | 1                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0        | 0           | 0           | 0      |
| Ethyl chloride<br>C <sub>2</sub> H <sub>5</sub> Cl                                                          |                |               |                | 0                      | S               | S                 | S               | 0                     | 0                     | 0                  | 1                                   | 0                  | 0                            | 1              | 1      | 1      | 0      |          | 0           | 1           | 0      |
| Ethylene<br>CH <sub>2</sub> =CH <sub>2</sub>                                                                |                |               | 20             | 0                      | 0               | 0                 | 0               |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |             | 0           |        |
| Ethylene dibromide see dibromethane                                                                         |                |               |                |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |             |             |        |
| Ethylene dichloride<br>see dichloroethane                                                                   |                |               |                |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |             |             |        |
| Ethylene glycol<br>CH <sub>2</sub> OH–CH <sub>2</sub> OH                                                    |                | 100           | 20             | 0                      | 0               | 0                 | 0               | 0                     | 1                     | 0                  | 0                                   | 1                  | 0                            | 0              | 0      | 0      | 1      | 0        | 0           | 0           |        |
| Exhaust gases<br>see combustion gas                                                                         |                |               |                |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |             |             |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                                 |                      |                                 |                               |                        |                       |                   |                  |                       |                       |                    | N                                   | later              | ials                         |                  |                       |                       |                  |                       |                  |                       |                       |
|------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|-------------------------------|------------------------|-----------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|-----------------------|
|                                                                                                                        |                      | Concentration                   | Temperature                   | s                      |                       | ainle<br>steel:   |                  |                       | Nick                  | el al              | loys                                |                    |                              | oppe             |                       |                       | Ρ                | 'ure r                | netal            | s                     |                       |
| Designation<br>Chemical formula                                                                                        |                      | Concel                          | Tempe                         | Non-/low- alloy steels | els                   | steels            | + Mo             | 858 / al loy          | alloy 600             | oy 625             | 819 /alloy                          | oy 400             | ٨٥                           |                  |                       |                       |                  |                       |                  | _                     |                       |
|                                                                                                                        |                      | %                               | С                             | Non-/low-              | Ferritic steels       | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac           | Bronze                | Copper                | Nickel           | Titanium              | Tantalum         | Aluminium             | Silver                |
| Fats                                                                                                                   |                      |                                 |                               | 0                      | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            |                  | 0                     | 0                     | 0                | 0                     | 0                | 0                     |                       |
| Fatty acid<br>C <sub>17</sub> H <sub>33</sub> COOH                                                                     |                      | 100<br>100<br>100<br>100<br>100 | 20<br>60<br>150<br>180<br>300 | 0<br>3<br>3<br>3<br>3  | 0<br>0<br>3<br>3<br>3 | 0<br>0<br>3<br>3  | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0   | 0<br>0<br>0<br>0<br>0               | 1<br>0<br>1<br>1   | 1                            | 1<br>1<br>1<br>3 | 0<br>1<br>1<br>3<br>3 | 1<br>1<br>3<br>3<br>3 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>1<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0 |
| Fixing salt<br>see sodium thiosul                                                                                      | phate                |                                 |                               |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |                  |                       |                       |                  |                       |                  |                       |                       |
| Flue gases<br>see combustion ga                                                                                        | ises                 |                                 |                               |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |                  |                       |                       |                  |                       |                  |                       |                       |
| <b>Fluorine</b><br>F                                                                                                   | mo<br>dr<br>dr<br>dr | 100<br>100<br>100               | 20<br>20<br>200<br>500        | 3<br>0<br>0<br>3       | 3<br>0<br>0           | 3<br>0<br>P       | 3<br>0<br>P      |                       |                       |                    | 0<br>0<br>0<br>0                    | 0<br>0<br>0        | 3<br>0                       | 3<br>0           | 3<br>0                | 3<br>0<br>3           | 0<br>0<br>0      | 3<br>0<br>0           |                  | 3<br>3<br>3<br>3<br>3 | 0<br>0                |
| $\begin{array}{l} \textbf{Fluorosilicic acid} \\ \textbf{H}_2(\textbf{SiF}_6) \end{array}$                             | vapour               | 100<br>25<br>70                 | 20<br>20<br>20                | 3<br>3<br>3<br>3       | 3<br>3<br>3<br>3      | P<br>3<br>3<br>3  | P<br>3<br>3<br>3 | 1                     | 1                     | 1                  | 1<br>1<br>1                         | 3                  | 1                            | 3<br>3           | 1<br>1                | 1<br>1                | 1                | 3<br>2                |                  | 3<br>3<br>3<br>3<br>3 |                       |
| <b>Formaldehyde</b><br>CH <sub>2</sub> O                                                                               | hy<br>hy<br>hy       | 10<br>40<br>all                 | 20<br>20<br>bp                | 3<br>3<br>3            | 0<br>0<br>0           | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0<br>0                         | 0<br>0             | 0<br>0                       | 3<br>3           | 0<br>0                | 0<br>0                | 0<br>0           | 0<br>0<br>0           |                  | 1<br>1<br>3           | 0<br>0                |
| Formic acid<br>HCOOH                                                                                                   |                      | 10<br>10<br>80<br>85            | 20<br>bp<br>65                | 3<br>3<br>3<br>3       | 3<br>3<br>3<br>3      | 1<br>3<br>3<br>3  | 0<br>1<br>3<br>3 | 0<br>0<br>0<br>0      | 1<br>1<br>1<br>1      | 0<br>0<br>0<br>0   | 0<br>0<br>0<br>0                    | 1<br>1<br>3<br>2   |                              | 0<br>0<br>0<br>0 |                       | 0<br>0<br>1           | 1<br>3<br>1<br>1 | 0<br>0<br>3<br>3      | 0                | 0<br>3<br>3<br>3      | 1<br>3<br>3           |
| Fuels<br>Benzine                                                                                                       |                      |                                 | 20<br>bp                      |                        | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  |                              | 0                | 0                     | 0                     | 0                |                       |                  | 0                     |                       |
| Benzene                                                                                                                |                      |                                 | 20<br>bp                      |                        | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | Ö                  |                              | 0                | 0                     | 0                     | 0                |                       |                  | 0                     |                       |
| Benzine-alcohol-m<br>Diesel oil                                                                                        | nixture              |                                 | 20<br>20                      |                        | 0<br>0                | 0                 | 0<br>0           | 0                     | 0                     | 0                  | 0                                   | 0                  |                              | 0<br>0           | 0<br>0                | 0<br>0                | 0                |                       |                  | 0                     |                       |
| Furfural                                                                                                               |                      | 100<br>100                      | 25<br>bp                      | 1<br>3                 | 1<br>1                | 1<br>1            | 1<br>1           |                       |                       |                    | 0<br>0                              |                    | 0                            | 3                | 0                     | 0<br>3                |                  |                       | 0<br>0           | 0<br>0                |                       |
| $\begin{array}{l} \textbf{Gallic acid} \\ \textbf{C}_{_{6}}\textbf{H}_{_{2}}\text{(OH)}_{_{3}}\text{COOH} \end{array}$ | hy                   | 1<br>100<br>100                 | 20<br>20<br>bp                | 1<br>3<br>3            | 0<br>0<br>0           | 0<br>0<br>0       | 0<br>0<br>0      |                       | 3                     |                    | 0                                   |                    |                              |                  |                       |                       |                  |                       | 0<br>0<br>0      |                       |                       |

332 WITZENMANN

(HYDRA®)

# **Resistance table**

| Medium                                                                                                                                                                                                                    |               |             |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |        |        |          |          |           |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|--------|----------|----------|-----------|----------|
|                                                                                                                                                                                                                           | Concentration | Temperature | s                      |                 | tainle<br>steel:  |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |        |        | Р      | ure r    | netal    | S         |          |
| Designation<br>Chemical formula                                                                                                                                                                                           | Conce         | Tempe       | alloy steel            | s               | steels            | + Mo            | 358 / alloy           | alloy 600             | oy 625             | 819 /alloy                          | y 400              | λ                            |                |        |        |        |          |          |           |          |
|                                                                                                                                                                                                                           | %             | с           | Non-/low- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel | Titanium | Tantalum | Aluminium | O Silver |
| Gelatine                                                                                                                                                                                                                  |               | 20<br>80    | 0<br>1                 | 0<br>0          | 0<br>0            | 0<br>0          |                       | 0<br>0                |                    | 0                                   | 0                  | 0                            | 1              | 0      | 0      | 0      | 0        | 0        | 0         | 0<br>0   |
| <b>Glacial acetic acid</b><br>CH <sub>3</sub> CO <sub>2</sub> H<br>see acetic acid                                                                                                                                        |               |             |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |          |           |          |
| Glass me                                                                                                                                                                                                                  |               | 1200        | 1                      |                 | 1                 | 1               |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |          |           |          |
| Glauber salt<br>see sodium sulphate                                                                                                                                                                                       |               |             |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |          |           |          |
| <b>Gluconic acid</b><br>CH <sub>2</sub> OH(CHOH) <sub>4</sub> -COOH                                                                                                                                                       | 100           | 20          | 1                      | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      | 0      | 0        |          | 0         |          |
| $\begin{array}{c} \textbf{Glucose} \\ \textbf{C}_6\textbf{H}_{12}\textbf{O}_6 \end{array} \qquad $ |               | 20          |                        | 0               | 0                 | 0               |                       |                       |                    |                                     |                    | 0                            | 1              | 0      | 0      |        | 0        |          | 0         |          |
| Glutamic acid<br>HOOC-CH <sub>2</sub> -CH <sub>2</sub> -<br>CHNH <sub>2</sub> -COOH                                                                                                                                       |               | 20<br>80    | 1<br>3                 | P<br>P          | P<br>P            | 0<br>0          | 0                     | 1<br>1                | 0                  | 0<br>1                              | 1                  |                              |                |        |        | 1      |          |          |           |          |
| <b>Glycerine</b><br>CH <sub>2</sub> OH–CHOH–CH <sub>2</sub> OH                                                                                                                                                            | 100<br>100    | 20<br>bp    | 0<br>1                 | 0<br>1          | 0<br>0            | 0<br>0          | 0                     | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0                            | 0<br>1         | 0      | 0<br>0 | 0<br>0 | 0        | 0<br>0   | 0<br>0    | 1        |
| Glycol<br>see ethylenglycol                                                                                                                                                                                               |               |             |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |          |           |          |
| <b>Glycolic acid</b><br>CH <sub>2</sub> OH–COOH                                                                                                                                                                           |               | 20<br>bp    | 3<br>3                 | 1<br>3          | 1<br>3            | 1<br>3          |                       |                       |                    | 0<br>0                              |                    |                              |                |        |        |        | 0<br>0   |          | 1<br>1    |          |
| Glysantine<br>see antifreeze                                                                                                                                                                                              |               |             |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |          |           |          |
| $\begin{array}{l} \textbf{Hexachloroethane} \\ \text{CCl}_3 - \text{CCl}_3 \end{array}$                                                                                                                                   |               | 20          |                        |                 | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |        |        |        | 0        |          | 3         |          |
| $\begin{array}{c} \textbf{Hexamethylene-} & \text{hy} \\ \textbf{tetramine} & \text{hy} \\ (\texttt{CH}_2)_{\texttt{S}}\texttt{N}_4 \end{array}$                                                                          | 20<br>80      | 60<br>60    | 1<br>3                 |                 | 0<br>0            | 0<br>0          |                       |                       |                    | 0<br>0                              |                    |                              |                |        |        |        |          |          |           | 1        |
| Household ammonia<br>see ammonium hydroxide                                                                                                                                                                               |               |             |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |          |           |          |
| Hydrazene<br>H <sub>2</sub> N-NH <sub>2</sub>                                                                                                                                                                             |               | 20          | 0                      |                 | 0                 |                 | 3                     | 3                     |                    |                                     | 3                  |                              |                |        |        | 3      |          |          | 1         |          |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                                       |                             |                         |                        |                  |                                                |                            |                       |                       |                    | N                                   | later              | ials                         |                  |             |             |             |                       |                  |                  |             |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|------------------------|------------------|------------------------------------------------|----------------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|------------------|-------------|-------------|-------------|-----------------------|------------------|------------------|-------------|
|                                                                                                                              | Concentration               | Temperature             | s                      | -                | tainle<br>steels                               |                            |                       | Nick                  | el al              | loys                                |                    |                              | oppe             |             |             | Ρ           | ure r                 | netal            | s                |             |
| Designation<br>Chemical formula                                                                                              | Conce                       | Tempe                   | Non-/low- alloy steels | eels             | c steels                                       | c + Mo                     | steels 2.4858 / alloy | 8252.4816 / alloy 600 | lloy 625           | 2.4610, 2.4819 /alloy<br>C-4, C-246 | lloy 400           | lloy<br>0                    |                  |             |             |             |                       |                  | E                |             |
|                                                                                                                              | %                           | С                       | Non-/low               | Ferritic steels  | Austenitic steels                              | Austenitic + Mo            | steels 2.             | 8252.4816             | 2.4856 / alloy 625 | 2.4610, 2.<br>C-4, C-24             | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac           | Bronze      | Copper      | Nickel      | Titanium              | Tantalum         | Aluminium        | Silver      |
| $\begin{array}{ll} \mbox{Hydrazine sulphate} & \mbox{hy} \\ (\mbox{NH}_2)_2\mbox{H}_2\mbox{S0}_4 \end{array} \label{eq:NH2}$ | 10                          | bp                      | 3                      |                  | 3                                              | 3                          |                       |                       |                    |                                     |                    |                              |                  |             |             |             |                       |                  |                  |             |
| <b>Hydrobromic acid</b><br>aqueous solution of<br>hydrogen bromide (HBr)                                                     |                             | 20                      | 3                      | 3                | 3                                              | 3                          | 3                     | 3                     | 3                  | 3                                   | 3                  | 3                            | 3                | 3           | 3           | 3           |                       | 0                | 3                | 3           |
| Hydrochloric acid<br>HCl                                                                                                     | 0.2<br>0.5<br>0.5<br>1<br>2 | 20<br>bp<br>20<br>65    | 33333                  | 333333           | P<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | P<br>P<br>3<br>P<br>3<br>3 | 3                     | 3                     |                    | 0<br>0<br>3<br>0<br>0               | 1                  | 3                            | 3                | 3           | 3           | P<br>1      | 0<br>0<br>1<br>0<br>0 | 0<br>0<br>0<br>0 | 33               |             |
|                                                                                                                              | 5<br>15<br>32<br>32         | 20<br>20                | 3333                   | 3<br>3<br>3<br>3 | 3<br>3<br>3<br>3                               | ი<br>ი<br>ი<br>ი<br>ი<br>ი | 3<br>3                | 33                    |                    | 0<br>0<br>0<br>3                    | 1<br>3             | 3<br>3                       |                  | 1           | 3 3 3       | 3<br>3      | 3<br>3<br>3           | 3<br>0<br>0<br>0 | 3<br>3<br>3      | 0<br>1      |
| Hydrochloric-acid gas<br>see hydrogen chloride                                                                               |                             |                         |                        |                  |                                                |                            |                       |                       |                    |                                     |                    |                              |                  |             |             |             |                       |                  |                  |             |
| <b>Hydrofluoric acid</b><br>HF                                                                                               | 10<br>80<br>80<br>90        | 20<br>bp                | 3<br>1                 | 3                | 3                                              | 3                          | 1<br>1<br>1           | 1<br>1<br>1           | 0<br>1             | 0<br>1<br>1                         | 1<br>1<br>1<br>0   |                              | 3                | 3           | 3<br>1      | 1<br>1<br>1 | 3<br>3<br>3<br>3      | 3<br>3<br>3<br>3 | 3<br>3<br>3<br>3 |             |
| <b>Hydrogen</b><br>H                                                                                                         |                             | <300<br>>300            | 0<br>3                 |                  | 0<br>0                                         | 0<br>0                     |                       |                       |                    | 0<br>0                              |                    |                              | 0                |             | 0           |             |                       |                  | 0<br>0           |             |
| Hydrogen bromide dr<br>HBr mo                                                                                                | 100<br>30                   |                         | 0<br>3                 | 0<br>3           | 0<br>3                                         | 0<br>3                     |                       |                       |                    |                                     |                    |                              |                  |             |             |             | 0                     |                  |                  |             |
| Hydrogen chloride dr<br>HCl dr<br>dr<br>dr                                                                                   |                             | 20<br>100<br>250<br>500 | 0<br>0<br>1<br>3       | 3<br>3<br>3<br>3 | 1<br>3<br>3<br>3                               | 1<br>3<br>3<br>3           | 0<br>0<br>0           | 0<br>0<br>0<br>1      | 0<br>0<br>0        | 0<br>0<br>0<br>0                    |                    |                              | 3<br>3<br>3<br>3 | 3           | 3333        |             |                       |                  | 1<br>1<br>3<br>3 | 0<br>3<br>3 |
| Hydrogen cyanide<br>HCN hy<br>hy                                                                                             | 20<br>cs                    |                         | 3<br>3<br>3            | 0<br>1<br>1      | 0<br>0<br>0                                    | 0<br>0<br>0                | 0<br>0<br>0           | 1<br>1<br>0           | 0<br>0<br>0        | 0<br>0<br>0                         | 1<br>1<br>3        | 3<br>3<br>3                  | 3<br>3<br>3      | 3<br>3<br>3 | 1<br>1<br>1 | 0<br>0<br>0 | 0<br>0<br>0           | 0<br>0<br>0      | 0<br>0<br>0      |             |
| <b>Hydrogen fluoride</b><br>HF                                                                                               | 5<br>100                    |                         | 3                      | 3<br>3           | 3<br>3                                         | 3<br>3                     | 3<br>3                | 0<br>3                | 0                  | 0<br>0                              | 0<br>3             |                              | 3                |             | 3<br>3      | 0<br>0      | 3<br>3                | 3<br>3           | 3<br>3           |             |
| $\begin{array}{l} \textbf{Hydrogen peroxide} \\ \textbf{H}_2\textbf{0}_2 \end{array}$                                        | all                         | 20                      | 3                      | 3                | 0                                              | 0                          | 0                     | 1                     | 0                  | 0                                   | 1                  | 3                            | 3                | 3           |             | 3           | 1                     | 3                | 0                | 0           |

(HYDRA®)

# **Resistance table**

| Medium                                                                              |                      |                      |                        |                        |                       |                   |                  |                       |                       |                    | N                                   | later              | ials                         |                |             |             |             |                  |             |             |        |
|-------------------------------------------------------------------------------------|----------------------|----------------------|------------------------|------------------------|-----------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|-------------|-------------|-------------|------------------|-------------|-------------|--------|
|                                                                                     |                      | Concentration        | Temperature            | ls                     |                       | ainle<br>steel:   |                  |                       |                       | cel al             | loys                                |                    |                              | oppe<br>alloy: |             |             | Р           | ure r            | netal       | s           |        |
| Designation<br>Chemical formula                                                     |                      | Conce                | Tempe                  | alloy stee             | sla                   | steels            | + Mo             | 358 / alloy           | alloy 600             | oy 625             | 319 /alloy                          | oy 400             | λc                           |                |             |             |             |                  |             |             |        |
|                                                                                     |                      | %                    | С                      | Non-/low- alloy steels | ω ω ω Ferritic steels | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze      | Copper      | Nickel      | O Titanium       | Tantalum    | O Aluminium | Silver |
| $\begin{array}{l} \textbf{Hydrogen sulphide} \\ \textbf{H}_2\textbf{S} \end{array}$ | dr<br>dr<br>dr<br>mo | 100<br>100<br>100    | 20<br>100<br>200<br>20 | 1<br>3<br>3<br>3       | S<br>S<br>3<br>3      | 0<br>0<br>0<br>0  | 0<br>0<br>0<br>0 | 0                     | 1<br>0                | 0                  | 0                                   | 1<br>0             | 0<br>3                       | 0<br>3         | 0<br>3      | 0<br>0<br>3 | 0           | 0                | 0           | 0<br>0<br>0 | 1<br>3 |
| Hydroiodic acid                                                                     | dr<br>mo             |                      | 20<br>20               | 0<br>3                 | 0<br>3                | 0<br>3            | 0<br>3           |                       |                       |                    |                                     |                    |                              |                |             |             |             |                  |             |             |        |
| <b>Hypochlorous acid</b><br>HOCI                                                    |                      |                      | 20                     | 3                      | 3                     | 3                 | 3                |                       |                       |                    |                                     |                    |                              |                |             |             |             | 0                |             | 3           |        |
| Indol                                                                               |                      |                      | 20                     | 0                      | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0           | 0           | 0           | 0                |             | 0           |        |
| <b>Ink</b><br>see gallic acid                                                       |                      |                      |                        |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |                |             |             |             |                  |             |             |        |
| lodine<br>J <sub>2</sub>                                                            | dr<br>mo<br>mo       | 100                  | 20<br>20<br>bp         | 0<br>3<br>3            | P<br>3<br>3           | P<br>3<br>3       | P<br>3<br>3      |                       |                       |                    | 0<br>1<br>1                         | 0<br>3<br>3        | 3                            | 3              | 3           | 3           | 3<br>3      | 3<br>0           |             | 0<br>3<br>3 | 3<br>3 |
| lodoform<br>CHJ <sub>3</sub>                                                        | dr<br>mo             |                      | 60<br>20               | 0<br>3                 | 0<br>3                | 0<br>P            | 0<br>P           |                       |                       |                    |                                     |                    |                              |                |             |             |             |                  |             | 0           |        |
| <b>Iron (II) chloride</b><br>FeCl <sub>2</sub>                                      | hy<br>hy             | 10<br>cs             | 20                     | 0                      |                       | Р                 | Р                | 3                     | 3                     |                    | 1<br>0                              | 3                  | 1<br>3                       | 3              | 1           | 1<br>3      | 3           | 0<br>0           | 0<br>0      | 3<br>3      |        |
| <b>Iron (II) sulphate</b><br>FeSO <sub>4</sub>                                      | hy                   | all                  | bp                     | 0                      | 0                     | 0                 | 0                |                       |                       |                    | 0                                   | 0                  |                              |                |             |             | 3           | 0                |             | 3           |        |
| <b>Iron (III) chloride</b><br>FeCl <sub>3</sub>                                     | dr<br>hy<br>hy<br>hy | 100<br>5<br>10<br>50 | 20<br>25<br>65<br>20   | 0<br>3<br>3<br>3       | P<br>3<br>1<br>3      | P<br>3<br>1<br>3  | P<br>3<br>1<br>3 | 1<br>3                | 3<br>3<br>3           |                    | 0<br>0<br>3<br>1                    | 3<br>3             | 3<br>3<br>3                  | 3<br>3<br>3    | 3<br>3<br>3 | 3<br>3<br>3 | 3<br>3<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0 | 3<br>3      |        |
| <b>Iron (III) nitrate</b><br>Fe(NO <sub>3</sub> ) <sub>3</sub>                      | hy<br>hy             | 10<br>all            | 20<br>bp               | 3<br>3                 | 0<br>0                | 0<br>0            | 0<br>0           | 3                     | 3                     | 3                  | 0<br>3                              | 3                  |                              |                |             | 3           | 0           | 0                |             |             |        |
| <b>Iron (II) sulphate</b><br>FeSO <sub>4</sub>                                      | hy                   | all                  | bp                     | 0                      | 0                     | 0                 | 0                |                       |                       |                    | 0                                   | 0                  |                              |                |             |             | 3           | 0                |             | 3           |        |
| <b>Iron (III) sulphate</b><br>Fe(SO <sub>4</sub> ) <sub>3</sub>                     | hy<br>hy             | <30<br>all           | 20<br>bp               | 3<br>3                 | 0<br>1                | 0<br>0            | 0<br>0           | 0                     | 3                     |                    | 0<br>0                              | 1                  | 3                            | 3              | 3           | 3           | 3           | 0<br>0           | 0<br>0      | 3<br>3      |        |
| Isatine<br>C <sub>8</sub> H <sub>5</sub> NO <sub>2</sub>                            |                      |                      | 20                     | 1                      | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0           | 0           | 0           | 0                |             | 0           |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                 |                      |                       |                      |                        |                  |                   |                  |                       |                       |                    | N                                   | later              | ials                         |        |        |        |        |                  |                  |                  |        |
|--------------------------------------------------------|----------------------|-----------------------|----------------------|------------------------|------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------|--------|--------|--------|------------------|------------------|------------------|--------|
|                                                        |                      | Concentration         | Temperature          | s                      |                  | tainle<br>steels  |                  |                       | Nick                  | el al              | loys                                |                    |                              | oppe   |        |        | Ρ      | ure r            | netal            | s                |        |
| Designation<br>Chemical formula                        |                      | Concel                | Tempe                | alloy steel            | s                | teels             | - Mo             | 858 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | ٨.                           |        |        |        |        |                  |                  |                  |        |
|                                                        |                      | %                     | С                    | Von-/low- alloy steels | Ferritic steels  | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper | Nickel | Titanium         | Tantalum         | Aluminium        | Silver |
| Kalinite<br>see alum                                   |                      |                       |                      |                        |                  |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |        |                  |                  |                  |        |
| Ketene<br>R <sub>2</sub> C=C=O                         |                      |                       | 20<br>bp             |                        | 0<br>0           | 0<br>0            | 0<br>0           | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              |                    |                              |        |        |        | 0<br>0 | 0<br>0           | 0<br>0           | 0<br>0           |        |
| <b>Lactic acid</b> $C_3H_6O_3$                         | hy<br>hy<br>hy<br>hy | 1<br>all<br>10<br>all | 20<br>20<br>bp<br>bp | 3<br>3<br>3<br>3       | 3<br>3<br>3<br>3 | 0<br>1<br>3<br>3  | 0<br>0<br>3<br>1 | 0<br>0                | 3                     | 0                  | 0<br>0<br>0<br>0                    | 3                  | 0<br>1                       | 3      | 1      | 0<br>1 | 3      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>3<br>3<br>3 |        |
| Lactose $C_{12}H_{22}O_{11}$                           | hy                   |                       | 20                   | 0                      | 0                | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0      | 0      | 0      | 0      | 0                |                  | 0                |        |
| <b>Lead</b><br>Pb                                      | me                   |                       | 388<br>900           | 3<br>3                 | 1<br>3           | 1<br>3            | 1<br>3           |                       | 0                     |                    | 0                                   | 3                  |                              |        |        | 3      |        | 0                | 0                |                  |        |
| Lead acetate<br>(CH <sub>3</sub> -C00) <sub>2</sub> Pb | me                   |                       |                      | 3                      | 0                | 0                 | 0                |                       |                       |                    | 0                                   | 0                  |                              |        | 3      | 3      |        |                  |                  | 3                |        |
| Lead acide<br>Pb(N <sub>3</sub> ) <sub>2</sub>         |                      | <20                   | <30                  |                        |                  |                   |                  | 0                     | 0                     | 0                  |                                     | 1                  |                              |        |        |        | 1      |                  |                  |                  |        |
| Lead nitrate<br>Pb(NO <sub>3</sub> ) <sub>2</sub>      | hy                   |                       | 100                  | 1                      | 0                | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |        |        |        |        | 0                | 0                | 0                |        |
| Lime<br>see calcium oxide                              |                      |                       |                      |                        |                  |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |        |                  |                  |                  |        |
| <b>Lithium</b><br>Li                                   | me                   |                       | 300                  | 0                      | 0                | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 3                  | 3                            | 3      | 3      | 3      |        | 0                |                  | 3                |        |
| Lithium chloride<br>LiCl                               | hy                   | CS                    |                      | 3                      | 3                | 3                 | Ρ                | 0                     | 0                     | 0                  | 0                                   | 1                  |                              |        |        |        | 0      | 0                |                  |                  |        |
| <b>Lithium hydroxide</b><br>LiOH                       | hy                   | all                   | 20                   | 1                      | 0                | 0                 | 0                | 0                     | 0                     | 0                  |                                     | 0                  |                              |        |        |        | 0      | 0                |                  |                  |        |
| <b>Magnesium</b><br>Mg                                 | me                   |                       | 650                  |                        | 1                | 3                 | 3                | 3                     | 3                     |                    | 3                                   | 3                  | 3                            | 3      | 3      | 3      | 3      | 0                | 0                | 3                |        |
| Magnesium<br>carbonate MgCO <sub>3</sub>               | hy<br>hy             |                       | 20<br>bp             | 0<br>0                 | 0<br>0           | 0                 | 0<br>0           | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0<br>0                       |        |        | 0<br>0 | 0<br>0 | 0<br>0           | 0<br>0           | 1<br>1           |        |

(HYDRA®)

# **Resistance table**

| Medium                                                                                                |                |                |                 |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |        |        |        |             |             |             |             |        |
|-------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------|--------|--------|-------------|-------------|-------------|-------------|--------|
|                                                                                                       |                | Concentration  | Temperature     | s                      |                 | tainle<br>steel:  |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe   |        |        | Р           | ure r       | netal       | s           |        |
| Designation<br>Chemical formula                                                                       |                | Conce          | Tempe           | alloy stee             | s               | teels             | - Mo            | 358 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | Ŋ                            |        |        |        |             |             |             |             |        |
|                                                                                                       |                | %              | С               | Non-/low- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper | Nickel      | Titanium    | Tantalum    | S Aluminium | Silver |
| <b>Magnesium chloride</b><br>MgCl <sub>2</sub>                                                        | hy<br>hy<br>hy | 5<br>5<br>50   | 20<br>bp<br>bp  | 3<br>3<br>3            | 3<br>3<br>3     | P<br>3<br>3       | P<br>3<br>3     | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0<br>0                         | 0<br>0             | 3<br>3                       |        |        | 3<br>3 | 0<br>0      | 0<br>0<br>0 | 0<br>0<br>0 | 3<br>3<br>3 |        |
| Magnesium hydroxide Mg(OH) <sub>2</sub>                                                               | hy<br>hy       | cs<br>sa       |                 | 0<br>0                 |                 | 0<br>0            | 0<br>0          | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0                            | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0      | 0<br>0      | 0<br>0      | 3<br>3      |        |
| <b>Magnesium nitrate</b><br>Mg(NO <sub>3</sub> ) <sub>2</sub>                                         |                | CS             |                 | 0                      | 0               | 0                 | 0               | 3                     | 3                     |                    | 3                                   | 0                  | 3                            | 0      | 0      | 3      | 3           | 0           | 0           | 1           |        |
| Magnesium oxide<br>see magnesium hydro                                                                | ixide          |                |                 |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |        |        |        |             |             |             |             |        |
| <b>Magnesium sulphate</b><br>MgSO <sub>4</sub>                                                        | hy<br>hy<br>hy | 0.1<br>5<br>50 | 20<br>20<br>bp  | 0<br>3<br>3            | 1<br>1<br>1     | 0<br>0<br>0       | 0<br>0<br>0     | 0                     | 1                     | 0                  | 0<br>0<br>1                         | 1                  | 0                            | 3      | 0      | 0      | 1           | 0<br>0<br>0 | 0<br>0<br>0 | 3<br>0<br>0 |        |
| <b>Maleic acid</b><br>HOOC-HC=CH-<br>COOH                                                             | hy<br>hy       | 5<br>50        | 20<br>100       | 3<br>3                 | 0<br>0          | 0<br>0            | 0<br>0          | 0                     | 1<br>1                | 0                  | 0<br>0                              | 1                  | 0                            |        |        |        | 1           |             |             | 0<br>0      |        |
| Maleic anhydride                                                                                      |                | 100            | 285             |                        |                 |                   |                 |                       |                       |                    | 0                                   |                    |                              |        |        |        |             |             |             |             |        |
| Mallic acid                                                                                           | hy<br>hy       | 50             | 20<br>100       | 3<br>3                 | 3<br>3          | 0<br>0            | 0<br>0          | 0<br>0                | 1<br>1                | 0<br>0             | 0<br>0                              | 1<br>1             | 3<br>3                       | 3      | 3      | 3<br>3 | 3<br>3      | 0<br>0      | 0<br>0      | 0<br>0      |        |
| $\begin{array}{l} \textbf{Malonic acid} \\ \text{CH}_{2}(\text{COOH})_{2} \end{array}$                |                |                | 20<br>50<br>100 |                        |                 | 1                 | 1               | 1<br>1<br>3           | 1<br>1<br>3           | 1<br>1             | 1<br>1<br>3                         | 1<br>1<br>3        |                              |        |        |        | 1<br>1<br>3 | 1<br>1<br>3 |             | 1           |        |
| Manganese(II)<br>chloride MnCl <sub>2</sub>                                                           | hy<br>hy       | 5<br>50        | 100<br>20       | 3<br>1                 | Р<br>3          | P<br>P            | P<br>P          | 1<br>1                | 1<br>1                | 1<br>1             |                                     | 1<br>1             | 3<br>3                       |        |        | 3<br>3 | 1<br>1      | 0<br>0      | 0<br>0      |             |        |
| Manganese(II)<br>sulphate MnSO <sub>4</sub>                                                           |                | cs             |                 |                        | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |        |        | 0      | 0           | 0           |             |             |        |
| Maritime climate                                                                                      | то             |                |                 | 2P                     | 1P              | 1P                | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 1      | 0      | 0      | 0           | 0           | 0           | 2           | 1      |
| Methanol<br>see methyl alcohol                                                                        |                |                |                 |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |        |        |        |             |             |             |             |        |
| $\begin{array}{c} \textbf{Menthol} \\ \textbf{C}_{10}\textbf{H}_{19}\textbf{O}\textbf{H} \end{array}$ |                |                |                 |                        | 0               | 0                 | 0               | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0      | 0      | 0      | 0           | 0           | 0           | 0           |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                      |                |               |                 |                        |                 |                   |                 |                       |                       |                    | N                                   | later              | ials                         |                |        |        |        |             |          |             |        |
|-------------------------------------------------------------|----------------|---------------|-----------------|------------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|--------|-------------|----------|-------------|--------|
|                                                             |                | Concentration | Temperature     | s                      |                 | ainle<br>steel:   |                 |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |        |        | Ρ      | ure r       | netal    | S           |        |
| <b>Designation</b><br>Chemical formula                      |                | Conce         | Tempe           | alloy steel            | s               | teels             | - Mo            | 858 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | Ŋ                            |                |        |        |        |             |          |             |        |
|                                                             |                | %             | С               | Non-/low- alloy steels | Ferritic steels | Austenitic steels | Austenitic + Mo | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel | Titanium    | Tantalum | Aluminium   | Silver |
| Mercury<br>Hg                                               | dr             | 100<br>all    | 20<br><500      | 0<br>1                 | Р<br>1          | Р<br>1            | P<br>0          |                       | 0<br>0                | 0<br>0             | 0<br>0                              | 3<br>3             | 3<br>3                       | 3<br>3         | 3<br>3 | 3<br>3 | 0      | 0<br>0      | 0        | 1<br>3      | 3      |
| Methane<br>CH <sub>4</sub>                                  |                |               | 200<br>600      | 0                      | 0               | 0                 | 0               | 0                     | 0                     | 0<br>0             | 0                                   | 0                  | 0                            | 0              | 0      | 0<br>0 | 0      |             |          | 0           |        |
| <b>Methyl acetate</b><br>CH <sub>3</sub> COOCH <sub>3</sub> |                | 60<br>60      | 20<br>bp        | 0<br>0                 |                 | 0<br>0            | 0<br>0          |                       |                       |                    | 0<br>0                              |                    |                              |                |        |        |        | 0<br>0      | 0<br>0   |             |        |
| <b>Methyl alcohol</b><br>CH <sub>3</sub> OH                 |                | <100<br>100   | 20<br>bp        | 1                      | 0<br>3          | 0<br>1            | 0<br>1          | 0                     | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             |                              | 0              | 0      | 0<br>0 | 0<br>0 | 0<br>0      | 1<br>0   | 1           | 0      |
| Methylamine<br>CH <sub>3</sub> NH <sub>2</sub>              | hy             | 25            | 20              | 1                      | 0               | 0                 | 0               | 0                     |                       | 0                  | 0                                   | 3                  | 3                            | 3              | 3      | 3      |        | 0           |          | 0           |        |
| <b>Methyl chloride</b><br>CH <sub>3</sub> Cl                | dr<br>mo<br>mo | 100           | 20<br>20<br>100 | 0<br>3                 | 0<br>P<br>P     | 0<br>P<br>P       | 0<br>P<br>P     |                       | 0<br>0<br>0           | 0<br>0<br>0        | 0                                   | 0                  |                              | 0              | 0      | 0<br>1 | 0      | 0<br>0<br>0 |          | 0<br>3<br>3 |        |
| Methyldehyde<br>see formaldehyde                            |                |               |                 |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |             |          |             |        |
| Methylene dichloride<br>CH <sub>2</sub> Cl <sub>2</sub>     | dr<br>mo<br>mo |               | 20<br>20<br>bp  | 0                      | P<br>P<br>P     | P<br>P<br>P       | P<br>P<br>P     | 0<br>1                |                       | 1<br>1             | 1                                   | 1<br>1             | 0<br>0<br>1                  |                |        | 0<br>0 | 1      | 0<br>0<br>0 |          | 0<br>3<br>3 |        |
| Milk of lime<br>Ca(OH) <sub>2</sub>                         |                |               | 20<br>bp        | 0<br>0                 | 1<br>1          | 0<br>0            | 0<br>0          |                       |                       |                    |                                     |                    |                              |                |        |        |        |             |          | 0<br>0      |        |
| Milk sugar<br>see lactose                                   |                |               |                 |                        |                 |                   |                 |                       |                       |                    |                                     |                    |                              |                |        |        |        |             |          |             |        |

(HYDRA®)

# **Resistance table**

| Medium                                                                                                                                                                                                                                                                                   |                                                                                                 |                 |                                                                                    |                            |                                         |                                                                         |                                                                              |                       |                       |                    | N                                   | later              | ials                         |                |        |        |        |          |          |           |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|--------|----------|----------|-----------|--------|
|                                                                                                                                                                                                                                                                                          |                                                                                                 | Concentration   | Temperature                                                                        | s                          |                                         | ainle<br>steel:                                                         |                                                                              |                       | Nick                  | cel al             | loys                                |                    |                              | oppe<br>alloy: |        |        | Р      | ure r    | netal    | S         |        |
| <b>Designation</b><br>Chemical formula                                                                                                                                                                                                                                                   |                                                                                                 | Conce           | Tempe                                                                              | alloy stee                 | s                                       | teels                                                                   | - Mo                                                                         | 58 / alloy            | alloy 600             | y 625              | 19 /alloy                           | y 400              | 2                            |                |        |        |        |          |          |           |        |
|                                                                                                                                                                                                                                                                                          |                                                                                                 | %               | С                                                                                  | Non-/Iow- alloy steels     | Ferritic steels                         | Austenitic steels                                                       | Austenitic + Mo                                                              | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel | Titanium | Tantalum | Aluminium | Silver |
| $\begin{array}{c c c} \hline \textbf{Mixed acids} \\ HNO_3 & H_2SO_4 \\ \% & \% \\ 90 & 10 \\ 50 & 50 \\ 50 & 50 \\ 50 & 50 \\ 50 & 50 \\ 38 & 60 \\ 25 & 75 \\ 25 & 75 \\ 25 & 75 \\ 25 & 75 \\ 15 & 20 \\ 15 & 20 \\ 15 & 20 \\ 15 & 20 \\ 15 & 30 \\ 5 & 30 \\ 5 & 15 \\ \end{array}$ | H <sub>2</sub> O<br>%<br>-<br>-<br>2<br>-<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>80 |                 | 20<br>20<br>90<br>120<br>50<br>90<br>157<br>20<br>80<br>50<br>90<br>20<br>90<br>90 | 0<br>3<br>3<br>3<br>3<br>3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 0<br>0<br>1<br>3<br>0<br>1<br>3<br>3<br>0<br>1<br>0<br>1<br>0<br>1<br>1 | 0<br>0<br>1<br>3<br>0<br>0<br>1<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 |                       |                       |                    |                                     | 3                  |                              | 3              | 3      | 3      | 3      | 0        |          | 1 3       | 3      |
| Molasses                                                                                                                                                                                                                                                                                 |                                                                                                 |                 |                                                                                    |                            | 0                                       | 0                                                                       | 0                                                                            | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |        |        | 0      | 0        | 0        | 0         |        |
| Monochloroacetic acid                                                                                                                                                                                                                                                                    |                                                                                                 |                 |                                                                                    |                            |                                         |                                                                         |                                                                              |                       |                       |                    |                                     |                    |                              |                |        |        |        |          |          |           |        |
| $\begin{array}{c} \textbf{Naphthaline} \\ \textbf{C}_{_{10}}\textbf{H}_{_{8}} \end{array}$                                                                                                                                                                                               |                                                                                                 | 100<br>100      | 20<br>390                                                                          | 0<br>0                     | 0<br>0                                  | 0<br>0                                                                  | 0<br>0                                                                       |                       |                       |                    |                                     |                    |                              |                |        |        |        | 0        |          | 1         |        |
| Naphthaline chlorid                                                                                                                                                                                                                                                                      | e                                                                                               | 100<br>100      | 45<br>200                                                                          |                            |                                         |                                                                         |                                                                              |                       |                       |                    | 0<br>0                              |                    |                              |                |        |        |        |          |          |           |        |
| Naphthaline sulphor acid $C_{10}H_{\gamma}SO_{2}H$                                                                                                                                                                                                                                       | nic                                                                                             | 100<br>100      | 20<br>bp                                                                           | 0                          | 3                                       | 0<br>3                                                                  | 0<br>3                                                                       |                       |                       |                    | 0<br>0                              |                    |                              |                |        |        |        |          |          |           |        |
| Naphthenic acid                                                                                                                                                                                                                                                                          | hy                                                                                              | 100             | 20                                                                                 |                            | Р                                       | Р                                                                       | Р                                                                            | 0                     | 0                     | 0                  |                                     | 0                  |                              |                |        |        | 1      |          |          | 0         |        |
| Nickel (II) chloride                                                                                                                                                                                                                                                                     | hy<br>hy                                                                                        | 10<br>10<br>tot | 20<br>bp<br>70                                                                     | 3<br>3                     | Р<br>3                                  | P<br>P                                                                  | P<br>P<br>O                                                                  | 0                     | 1                     | 0                  | 0<br>0<br>1                         | 1                  | 1                            | 3              | 1      | 3      | 1      | 0<br>0   |          |           | 0      |
| Nickel (II) nitrate<br>Ni(NO <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                 | hy<br>hy                                                                                        | 10<br><100      | 25<br>25                                                                           | 3<br>3                     | 0<br>0                                  | 0<br>0                                                                  | 0<br>0                                                                       | 0<br>0                | 0<br>3                | 0                  | 0<br>1                              | 3<br>3             | 3                            |                |        | 3<br>3 | 3<br>3 | 0<br>0   | 0<br>0   | 3<br>3    |        |
| Nickel (II) sulphate<br>NiSO4                                                                                                                                                                                                                                                            | hy<br>hy                                                                                        |                 | 20<br>bp                                                                           | 3<br>3                     | 0<br>0                                  | 0<br>0                                                                  | 0<br>0                                                                       | 0                     | 1<br>0                | 1                  | 1<br>1                              | 1<br>1             |                              |                |        |        | 3<br>3 | 0<br>0   |          |           |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                                                              |                |                                                                   |                                                                  |                                         |                                                               |                                                               |                                                                                             |                       |                       |                    | N                                                                       | later                                | ials                         |        |        |                       |                                      |                                                               |                                                                                             |                  |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------|-------------------------------------------------------------------------|--------------------------------------|------------------------------|--------|--------|-----------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|--------|
|                                                                                                                                                     |                | Concentration                                                     | Temperature                                                      | s                                       |                                                               | ainle<br>steels                                               |                                                                                             |                       | Nick                  | el al              | loys                                                                    |                                      |                              | oppe   |        |                       | P                                    | ure r                                                         | netal                                                                                       | s                |        |
| Designation<br>Chemical formula                                                                                                                     |                | Concer                                                            | Tempe                                                            | lloy steel:                             | s                                                             | teels                                                         | Mo                                                                                          | 58 / alloy            | alloy 600             | y 625              | 19 /alloy                                                               | y 400                                | ٨                            |        |        |                       |                                      |                                                               |                                                                                             |                  |        |
|                                                                                                                                                     |                | %                                                                 | С                                                                | Non-/low- alloy steels                  | Ferritic steels                                               | Austenitic steels                                             | Austenitic + Mo                                                                             | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246                                     | 2.4360 / alloy 400                   | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper                | Nickel                               | Titanium                                                      | Tantalum                                                                                    | Aluminium        | Silver |
| Nitric acid<br>HNO <sub>3</sub>                                                                                                                     |                | 1<br>5<br>5<br>10<br>15<br>25<br>50<br>65<br>65<br>99<br>20<br>40 | 20<br>bp<br>20<br>bp<br>bp<br>20<br>bp<br>20<br>bp<br>290<br>200 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0<br>0<br>1<br>1<br>3<br>3<br>0<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0           | 3<br>3<br>0<br>3<br>3 |                    | 0<br>1<br>0<br>1<br>3<br>3<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 1<br>3<br>3<br>3<br>3        | 3      | 3      | 3<br>3<br>3<br>3<br>3 | 0<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>3<br>1<br>3 |        |
| $\begin{array}{l} \textbf{Nitrobenzene} \\ \textbf{C}_{6}\textbf{H}_{x} (\textbf{NO}_{2})_{y} \end{array}$                                          | hy             |                                                                   |                                                                  | 0                                       | 0                                                             | 0                                                             | 0                                                                                           | 0                     | 0                     | 0                  | 1                                                                       | 0                                    | 0                            | 0      | 0      | 0                     | 0                                    | 0                                                             |                                                                                             | 0                |        |
| $\begin{array}{l} \textbf{Nitrobenzoic acid} \\ \textbf{C}_{_{\text{B}}}\textbf{H}_{_{\!\!4}}\!(\textbf{NO}_{_{\!\!2}}\!)\textbf{COOH} \end{array}$ | hy             |                                                                   | 20                                                               | 1                                       | 0                                                             | 0                                                             | 0                                                                                           | 0                     | 0                     | 0                  | 0                                                                       | 0                                    | 0                            | 0      | 0      |                       | 0                                    |                                                               |                                                                                             | 0                |        |
| <b>Nitroglycerine</b><br>$C_3H_5(ONO_2)_3$                                                                                                          | hy             |                                                                   | 20                                                               | 0                                       | 0                                                             | 0                                                             | 0                                                                                           |                       |                       |                    |                                                                         |                                      |                              |        |        |                       |                                      |                                                               |                                                                                             | 0                |        |
| <b>Nitrogen</b><br>N                                                                                                                                |                | 100<br>100                                                        | 20<br>900                                                        | 0<br>1                                  |                                                               | 0                                                             | 0                                                                                           |                       | 0                     | 0                  | 0                                                                       | 0                                    | 0                            | 0      | 0      | 0                     | 0<br>3                               | 0                                                             |                                                                                             | 0                | 0      |
| <b>Nitrous acid</b><br>HNO <sub>2</sub><br>similar to nitric acid                                                                                   |                |                                                                   |                                                                  |                                         |                                                               |                                                               |                                                                                             |                       |                       |                    |                                                                         |                                      |                              |        |        |                       |                                      |                                                               |                                                                                             |                  |        |
| Oleic acid<br>see fatty acid                                                                                                                        |                |                                                                   |                                                                  |                                         |                                                               |                                                               |                                                                                             |                       |                       |                    |                                                                         |                                      |                              |        |        |                       |                                      |                                                               |                                                                                             |                  |        |
| Oleum<br>see sulphur trioxide                                                                                                                       |                |                                                                   |                                                                  |                                         |                                                               |                                                               |                                                                                             |                       |                       |                    |                                                                         |                                      |                              |        |        |                       |                                      |                                                               |                                                                                             |                  |        |
| <b>Oxalic acid</b> $C_2H_2O_4$                                                                                                                      | hy<br>hy<br>hy | all<br>10<br>sa                                                   | 20<br>bp                                                         | 3<br>3<br>3                             | 3<br>3<br>3                                                   | 0<br>3<br>3                                                   | 0<br>3<br>3                                                                                 | 1<br>0<br>1           | 1<br>1<br>1           | 0<br>0<br>1        | 0<br>0<br>1                                                             | 1<br>1<br>1                          | 1                            |        |        | 1                     | 3<br>3                               | 0<br>3                                                        | 0<br>0                                                                                      | 0<br>3           |        |
| <b>Oxygen</b><br>O                                                                                                                                  |                |                                                                   | 500                                                              | 1                                       | 0                                                             | 0                                                             | 0                                                                                           |                       |                       |                    |                                                                         | 0                                    |                              |        | 3      | 3                     |                                      |                                                               |                                                                                             | 0                | 3      |
| Ozone                                                                                                                                               |                |                                                                   |                                                                  |                                         | 0                                                             | 0                                                             | 0                                                                                           | 0                     | 0                     | 0                  | 0                                                                       | 0                                    |                              |        |        | 1                     |                                      | 0                                                             |                                                                                             | 0                |        |
| Paraffin<br>CnH <sub>2n</sub> + <sub>2</sub>                                                                                                        | me             |                                                                   | 20<br>120                                                        | 0<br>0                                  | 0<br>0                                                        | 0<br>0                                                        | 0<br>0                                                                                      |                       |                       |                    |                                                                         |                                      | 0                            | 0      | 0      | 0                     |                                      | 0<br>0                                                        |                                                                                             | 0<br>0           |        |

(HYDRA®)

# **Resistance table**

| Medium                                                                                |                                  |                                 |                                  |                        |                                 |                            |                            |                       |                       |                    | N                                   | /later             | ials                         |                |             |             |             |                            |                       |           |        |
|---------------------------------------------------------------------------------------|----------------------------------|---------------------------------|----------------------------------|------------------------|---------------------------------|----------------------------|----------------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|-------------|-------------|-------------|----------------------------|-----------------------|-----------|--------|
|                                                                                       |                                  | Concentration                   | Temperature                      | s                      |                                 | tainle<br>steel:           |                            |                       | Nick                  | el al              | loys                                |                    |                              | oppe<br>alloys |             |             | P           | ure r                      | netal                 | S         | -      |
| <b>Designation</b><br>Chemical formula                                                |                                  | Conce                           | Tempe                            | alloy stee             | s                               | steels                     | + Mo                       | 358 / alloy           | alloy 600             | oy 625             | 819 /alloy                          | oy 400             | 2                            |                |             |             |             |                            |                       |           |        |
|                                                                                       |                                  | %                               | С                                | Non-/Iow- alloy steels | Ferritic steels                 | Austenitic steels          | Austenitic + Mo            | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze      | Copper      | Nickel      | Titanium                   | Tantalum              | Aluminium | Silver |
| Perchlorethane<br>see hexachlorethane                                                 |                                  |                                 |                                  |                        |                                 |                            |                            |                       |                       |                    |                                     |                    |                              |                |             |             |             |                            |                       |           |        |
| Perchloric acid (60% HCIO <sub>4</sub>                                                | )                                | 10<br>100                       | 20<br>20                         | 3<br>3                 | 3<br>3                          | 3<br>3                     | 3<br>3                     |                       |                       |                    |                                     |                    |                              |                |             |             |             | 0<br>0                     |                       | 3         |        |
| $\begin{array}{l} \textbf{Perchlorethylene} \\ \textbf{C}_2\textbf{Cl}_4 \end{array}$ | mo                               |                                 | 20<br>bp                         | 0<br>0<br>3            | 0<br>1<br>P                     | 0<br>1<br>P                | 0<br>1<br>P                |                       |                       |                    |                                     |                    |                              | 0<br>1         | 0<br>1      | 0<br>0      | 0<br>0      |                            |                       | 0<br>3    |        |
| <b>Perhydrol</b><br>see hydrogen<br>superoxide                                        |                                  |                                 |                                  |                        |                                 |                            |                            |                       |                       |                    |                                     |                    |                              |                |             |             |             |                            |                       |           |        |
| Petroleum                                                                             |                                  |                                 | 20<br>bp                         | 0<br>0                 | 0<br>0                          | 0<br>0                     | 0<br>0                     |                       | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 0                            | 1<br>1         | 0<br>0      | 0<br>0      | 0<br>3      | 0<br>0                     |                       | 0<br>0    |        |
| Petrol<br>see benzine (benzene                                                        | e)                               |                                 |                                  |                        |                                 |                            |                            |                       |                       |                    |                                     |                    |                              |                |             |             |             |                            |                       |           |        |
| Phenol<br>see carbolic acid                                                           |                                  |                                 |                                  |                        |                                 |                            |                            |                       |                       |                    |                                     |                    |                              |                |             |             |             |                            |                       |           |        |
| <b>Phloroglucinol</b> $C_6H_3(OH)_3$                                                  |                                  |                                 | 20                               |                        | 0                               | 0                          | 0                          | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |             |             |             | 0                          | 0                     | 0         |        |
| Phosgene<br>COCl <sub>2</sub>                                                         | dr                               |                                 | 20                               |                        | 0                               | 0                          | 0                          | 0                     | 0                     | 0                  | 0                                   | 0                  |                              |                |             |             |             | 0                          | 0                     | 0         |        |
| <b>Phosphoric acid</b><br>H <sub>3</sub> PO <sub>4</sub>                              | hy<br>hy<br>hy<br>hy<br>hy<br>hy | 1<br>10<br>30<br>60<br>80<br>80 | 20<br>20<br>bp<br>20<br>20<br>bp | 3 3 3 3 3 3 3          | 0<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>1<br>3<br>1<br>3 | 0<br>0<br>1<br>3<br>0<br>3 | 0                     | 0<br>0<br>0           | 0                  | 0<br>0<br>1<br>1<br>0<br>3          | 1                  | 3<br>1                       | 2              | 1<br>0<br>1 | 3<br>3<br>1 | 0<br>3<br>3 | 0<br>0<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0 | 3<br>3    | 0<br>1 |
| <b>Phosphorous</b><br>P                                                               | dr                               |                                 | 20                               | 0                      | 0                               | 0                          | 0                          |                       |                       |                    |                                     |                    |                              |                |             |             |             |                            |                       |           |        |
| Phosphorous penta-<br>chlorite PCI <sub>5</sub>                                       | dr                               | 100                             | 20                               | 0                      | 0                               | 0                          |                            |                       |                       |                    | 0                                   |                    |                              |                |             | 0           | 1           |                            |                       |           |        |
| Phtalic acid and phtalic anhydride $C_6H_4(COOH)_2$                                   | dr                               |                                 | 20<br>200<br>bp                  | 0                      | 0                               | 0<br>3<br>0                | 0<br>0<br>0                | 0                     |                       |                    | 0<br>0                              | 0<br>0             |                              | 0              | 0           | 0<br>0<br>0 | 0<br>0      |                            | 0                     | 0<br>0    | 0<br>0 |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                             |                            |                            |                         |                        |                       |                   |                  |                       |                       |                    | N                                   | later              | ials                         |        |        |        |        |             |          |             |        |
|----------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-------------------------|------------------------|-----------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------|--------|--------|--------|-------------|----------|-------------|--------|
|                                                                                                    |                            | Concentration              | Temperature             | s                      |                       | ainle<br>steel:   |                  |                       | Nick                  | el al              | loys                                |                    |                              | oppe   |        |        | Р      | ure r       | netal    | s           |        |
| <b>Designation</b><br>Chemical formula                                                             |                            | Concel                     | Tempe                   | alloy steel            | s                     | teels             | - Mo             | 58 / alloy            | alloy 600             | y 625              | 19 /alloy                           | y 400              | Å                            |        |        |        |        |             |          |             |        |
|                                                                                                    |                            | %                          | С                       | Non-/low- alloy steels | Ferritic steels       | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper | Nickel | Titanium    | Tantalum | Aluminium   | Silver |
| <b>Picric acid</b> $C_6H_2(OH)(NO_2)_3$                                                            | hy<br>hy<br>me             | 3<br>cs                    | 20<br>150               | 3<br>3<br>3            | 0<br>0<br>0           | 0<br>0<br>0       | 0<br>0<br>0      | 3                     | 3                     |                    | 0                                   | 3                  | 3                            | 3      | 3      | 3      | 3      | 0<br>0<br>0 |          | 1<br>0<br>3 | 0      |
| Plaster<br>see calcium sulphate                                                                    |                            |                            |                         |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |        |             |          |             |        |
| Potash lye<br>see potassium hydrox                                                                 | ide                        |                            |                         |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |        |             |          |             |        |
| <b>Potassium</b><br>K                                                                              | me                         |                            | 604<br>800              | 0                      |                       | 0<br>0            | 0<br>0           |                       |                       |                    | 1<br>1                              |                    |                              |        |        |        |        | 0<br>0      | 1        | 0<br>0      |        |
| Potassium acetate<br>CH <sub>3</sub> -COOK                                                         | me<br>hy                   | 100                        | 292<br>20               | 1                      | 0                     | 0<br>0            | 0<br>0           |                       | 0                     | 0                  | 0                                   | 0                  |                              |        | 1      | 1<br>1 | 0      | 0<br>0      |          |             |        |
| Potassium bisulphate<br>KHSO4                                                                      | hy<br>hy                   | 5<br>5                     | 20<br>90                | 3<br>3                 | 3<br>3                | 2<br>3            | 0<br>3           |                       |                       |                    |                                     |                    |                              |        |        |        |        | 0<br>3      |          |             |        |
| Potassium bitartrate $KC_4H_5O_6$                                                                  | hy<br>hy                   | cs<br>sa                   |                         | 3<br>3                 | 3<br>3                | 0<br>3            | 0<br>1           |                       |                       |                    |                                     |                    |                              |        |        |        | 0<br>1 | 0<br>0      |          | 0<br>0      |        |
| <b>Potassium bromide</b><br>KBr                                                                    | hy                         | 5                          | 30                      | 3                      | Р                     | Р                 | Р                | 0                     | 1                     | 0                  | 0                                   | 1                  | 0                            | 0      |        | 0      | 0      | 0           | 0        | 3           |        |
| $\begin{array}{c} \textbf{Potassium carbonate} \\ \textbf{K}_{2}\textbf{CO}_{3} \end{array}$       | hy<br>hy                   | 50<br>50                   | 20<br>bp                | 1<br>3                 | 0<br>3                | 0<br>0            | 0<br>0           | 0<br>0                | 0<br>0                | 0<br>0             | 0<br>0                              | 0<br>0             | 1                            | 3<br>3 | 1      | 1      | 0<br>0 | 0<br>0      | 0<br>0   | 3<br>3      | 0<br>0 |
| Potassium chlorate<br>KCIO <sub>3</sub>                                                            | hy<br>hy                   | 5<br>sa                    | 20                      | 3<br>3                 | 0<br>0                | 0<br>0            | 0<br>0           | 0<br>0                | 1<br>3                | 0<br>0             | 0                                   | 1<br>3             | 3<br>3                       | 1      | 1      | 1<br>1 | 1<br>3 | 0<br>0      | 0        | 0<br>1      |        |
| <b>Potassium chloride</b><br>KCl                                                                   | hy<br>hy<br>hy<br>hy<br>hy | 10<br>10<br>30<br>cs<br>sa | 20<br><bp<br>bp</bp<br> | 33333                  | 3<br>3<br>9<br>9<br>3 | P<br>P<br>P<br>P  | P<br>P<br>P<br>P | 0                     | 0                     | 0                  | 0<br>1<br>1<br>1                    | 0<br>0             | 0<br>3                       | 3      | 1      | 3      |        | 0           |          | 1<br>1<br>0 | 0      |
| $\begin{array}{l} \textbf{Potassium chromate} \\ \textbf{K}_2 \textbf{Cr}\textbf{O}_4 \end{array}$ | hy<br>hy                   | 10<br>10                   | 20<br>bp                | 0<br>1                 |                       | 0<br>0            | 0<br>0           | 0                     | 0                     | 0                  | 0                                   | 1                  | 0                            | 0      | 0      | 0      | 0      | 0<br>0      |          | 0<br>0      |        |
| <b>Potassium cyanide</b><br>KCN                                                                    | hy<br>hy                   | 10<br>10                   | 20<br>bp                | 3<br>3                 | 0<br>0                | 0<br>0            | 0<br>0           | 0                     | 3                     |                    | 0                                   | 1                  | 3<br>3                       | 3      | 3      | 3<br>3 | 3      |             | 0        | 3<br>3      |        |

(HYDRA®)

# **Resistance table**

| Medium                                                                                                  |                                  |                                         |                                   |                        |                                      |                                       |                                       |                  |                            |                    | N                                   | later              | ials                         |                |        |             |                       |                            |             |                                                          |        |
|---------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------|------------------------|--------------------------------------|---------------------------------------|---------------------------------------|------------------|----------------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|-------------|-----------------------|----------------------------|-------------|----------------------------------------------------------|--------|
|                                                                                                         |                                  | Concentration                           | Temperature                       | ls                     |                                      | ainle<br>steel:                       |                                       |                  |                            | cel al             | loys                                |                    |                              | oppe<br>alloy: |        |             | Р                     | ure r                      | netal       | s                                                        |        |
| <b>Designation</b><br>Chemical formula                                                                  |                                  | Conce                                   | Tempe                             | alloy stee             | s                                    | teels                                 | - Mo                                  | 2.4858 / alloy   | alloy 600                  | y 625              | 19 /alloy                           | y 400              | 2                            |                |        |             |                       |                            |             |                                                          |        |
|                                                                                                         |                                  | %                                       | С                                 | Non-/low- alloy steels | Ferritic steels                      | Austenitic steels                     | Austenitic + Mo                       | steels 2.48      | 8252.4816 / alloy 600      | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper      | Nickel                | Titanium                   | Tantalum    | Aluminium                                                | Silver |
| Potassium<br>dichromate<br>K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                                | hy<br>hy<br>hy                   | 10<br>25<br>25                          | 40<br>40<br>bp                    | 3<br>3<br>3            | 0<br>3<br>3                          | 0<br>0<br>0                           | 0<br>0<br>0                           | 1<br>1           | 1<br>1                     | 1                  | 1<br>1<br>1                         | 1<br>1             | 0<br>3<br>3                  | 3<br>3         | 3<br>3 | 3<br>3<br>3 | 1<br>1                | 0<br>0<br>0                | 0<br>0<br>0 | 0<br>0<br>0                                              | 0      |
| Potassium<br>ferricyanide<br>K <sub>3</sub> (Fe(CN) <sub>6</sub> )                                      | hy<br>hy<br>hy                   | 1<br>cs<br>sa                           | 20                                | 0<br>3                 | 0<br>0<br>0                          | 0<br>0<br>P                           | 1<br>0<br>0                           | 1                | 0<br>0<br>0                | 0                  | 0<br>0<br>0                         | 0<br>0             |                              |                | 0<br>0 | 1           | 0<br>0<br>0           | 0<br>0<br>0                | 0<br>0<br>0 | 0<br>0                                                   | 3<br>3 |
| Potassium<br>ferrocyanide<br>K₄(Fe(CN)₅)                                                                | hy<br>hy<br>hy                   | 1<br>25<br>25                           | 20<br>20<br>bp                    |                        | 0<br>0<br>1                          | 0<br>0<br>1                           | 0<br>0<br>0                           | 1<br>0<br>0      | 1<br>0<br>0                | 0<br>0<br>0        | 0<br>0<br>0                         | 0<br>0<br>0        | 0<br>0<br>0                  |                | 0      | 0           | 1<br>0<br>0           | 0<br>0<br>0                | 0<br>0<br>0 | 0<br>0<br>0                                              | 3<br>3 |
| <b>Potassium fluoride</b><br>KF                                                                         | hy<br>hy                         | cs<br>sa                                |                                   | 0<br>1                 | 0<br>0                               | 0<br>0                                | 0<br>0                                |                  |                            |                    | 0<br>0                              |                    |                              |                |        |             |                       |                            |             | 3                                                        |        |
| Potassium hydroxide<br>KOH                                                                              | hy<br>hy<br>hy<br>hy<br>hy<br>me | 10<br>20<br>30<br>50<br>50<br>sa<br>100 | 20<br>bp<br>bp<br>20<br>bp<br>360 | S<br>S<br>S<br>3       | 0<br>0<br>3<br>0<br>3<br>3<br>3<br>3 | S S S S S S S S S S S S S S S S S S S | S S S S S S S S S S S S S S S S S S S | 1<br>1<br>1<br>1 | 1<br>1<br>3<br>1<br>3<br>3 | 1<br>1<br>1        | 1<br>1<br>0<br>1<br>3               | 0<br>0<br>0<br>0   | 0<br>3<br>3<br>3<br>0        |                |        | 3<br>3<br>3 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>3<br>0<br>3<br>3 | 33333333    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0      |
| Potassium<br>hypochloride KCIO                                                                          | hy<br>hy                         | all<br>all                              | 20<br>bp                          |                        | P<br>P                               | P<br>P                                | P<br>P                                | 3<br>3           | 3<br>3                     |                    | 0<br>1                              | 3<br>3             | 3<br>3                       |                |        |             | 3<br>3                | 0<br>0                     |             | 3<br>3                                                   |        |
| <b>Potassium iodide</b><br>KJ                                                                           | hy<br>hy                         |                                         | 20<br>bp                          | 0<br>0                 | Р<br>3                               | P<br>P                                | P<br>P                                | 0<br>0           | 1<br>1                     | 1<br>1             | 0<br>0                              | 3<br>3             | 0<br>0                       |                |        | 0<br>0      | 3<br>3                | 0<br>0                     | 0<br>0      | 3<br>3                                                   |        |
| <b>Potassium nitrate</b><br>KNO <sub>3</sub>                                                            | hy<br>hy                         | all<br>all                              | 20<br>bp                          |                        | 0<br>0                               | 0<br>0                                | 0<br>0                                | 0                | 1                          | 1                  | 1<br>1                              | 1                  |                              |                |        |             | 1                     | 0<br>0                     |             | 0<br>1                                                   |        |
| Potassium nitrite                                                                                       |                                  | all                                     | bp                                | 1                      | 0                                    | 0                                     | 0                                     | 1                | 0                          | 0                  | 0                                   | 0                  | 1                            | 1              | 1      | 1           | 1                     |                            |             |                                                          |        |
| $\begin{array}{l} \textbf{Potassium permang-}\\ \textbf{anate} \hspace{0.1 cm} KMn0_{_{4}} \end{array}$ | hy<br>hy                         | 10<br>all                               | 20<br>bp                          | 0<br>3                 | 0<br>1                               | 0<br>1                                | 0<br>1                                | 0                | 1                          | 1                  | 0<br>1                              | 1<br>1             | 0<br>0                       |                |        | 0           | 0<br>0                | 0<br>0                     | 0<br>0      | 0<br>0                                                   | 3      |
| Potassium persulphate $K_2S_2O_8$                                                                       | e hy                             | 10                                      | 50                                | 3                      | 3                                    | 0                                     | 0                                     |                  | 0                          |                    | 0                                   | 3                  |                              | 3              | 3      | 3           | 3                     | 0                          |             | 3                                                        | 3      |
| $\begin{array}{l} \textbf{Potassium silicate} \\ \textbf{K}_2 \textbf{SiO}_3 \end{array}$               |                                  |                                         | 20                                | 1                      | 0                                    | 0                                     | 0                                     | 0                | 0                          | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0           | 0                     | 0                          |             | 3                                                        |        |
| $\begin{array}{l} \textbf{Potassium sulphate} \\ \textbf{K}_2 \textbf{S0}_4 \end{array}$                | hy<br>hy                         | 10<br>all                               | 25<br>bp                          | 3<br>0                 | 0<br>0                               | 0<br>0                                | 0<br>0                                | 0<br>0           | 0<br>0                     | 0<br>0             | 0<br>0                              | 0<br>0             | 0                            | 1<br>0         | 0<br>0 | 0<br>0      | 1<br>0                | 0<br>0                     | 0<br>0      | 0<br>1                                                   |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                                                               |                            |                             |                             |                            |                       |                   |                  |                       |                       |                    | N                                   | later              | ials                         |        |        |        |             |                  |          |             |        |
|----------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------|--------|--------|-------------|------------------|----------|-------------|--------|
|                                                                                                                      |                            | Concentration               | Temperature                 | s                          |                       | ainle<br>steel:   |                  |                       | Nick                  | el al              | loys                                |                    |                              | oppe   |        |        | Р           | ure r            | netal    | s           |        |
| Designation<br>Chemical formula                                                                                      |                            | Concer                      | Tempe                       | Non-/Iow- alloy steels     | sle                   | steels            | + Mo             | 858 / al loy          | 8252.4816 / alloy 600 | oy 625             | 819 /alloy                          | oy 400             | ٨٥                           |        |        |        |             |                  |          | _           |        |
|                                                                                                                      |                            | %                           | С                           | Non-/low-                  | Ferritic steels       | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816             | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper | Nickel      | Titanium         | Tantalum | Aluminium   | Silver |
| Protein solutions                                                                                                    |                            |                             | 20                          | 1                          | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            |        |        |        |             | 0                | 0        | 0           |        |
| <b>Pyridine</b><br>C <sub>s</sub> H <sub>s</sub> N                                                                   | dr                         | all<br>all                  | 20<br>bp                    |                            | 0<br>0                | 0<br>0            | 0<br>0           |                       | 0                     | 0                  | 0                                   | 0                  |                              |        |        |        | 0           | 0<br>0           |          | 0<br>0      |        |
| <b>Pyrogallol</b> $C_{g}H_{3}(OH)_{3}$                                                                               |                            | all<br>all                  | 20<br>bp                    | 3<br>3                     | 0<br>0                | 0<br>0            | 0<br>0           |                       |                       |                    | 0<br>1                              |                    |                              |        | 0<br>0 |        |             | 0<br>0           |          | 0<br>0      |        |
| Quinine bisulphate                                                                                                   | dr                         |                             | 20                          | 3                          | 3                     | 3                 | 0                | 0                     |                       | 0                  | 0                                   | 1                  | 0                            |        |        | 0      |             | 0                | 0        |             |        |
| Quinine sulphate                                                                                                     | dr                         |                             | 20                          | 3                          | 0                     | 0                 | 0                | 0                     |                       | 0                  | 0                                   | 1                  | 0                            |        | 0      | 0      |             | 0                | 0        |             |        |
| <b>Quinol</b><br>HO–C <sub>6</sub> H <sub>4</sub> –OH                                                                |                            |                             |                             | 3                          |                       | 0                 | 0                | 0                     | 0                     | 0                  |                                     | 1                  |                              |        |        |        | 1           |                  |          | 0           |        |
| Salicylic acid<br>HOC <sub>6</sub> H <sub>4</sub> COOH                                                               | dr<br>mo<br>hy             | 100<br>100<br>cs            | 20<br>20                    | 1<br>3<br>3                | 0                     | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0                | 1<br>1                | 0<br>0             | 0<br>1<br>0                         | 1<br>0<br>0        | 0<br>0                       |        |        | 0      | 1<br>0      | 0<br>0<br>0      | 0        | 0<br>1      |        |
| Salmiac<br>see ammonium chlor                                                                                        | ride                       |                             |                             |                            |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                  |          |             |        |
| Salpetre<br>see potassium nitrate                                                                                    | е                          |                             |                             |                            |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                  |          |             |        |
| $\begin{array}{l} \textbf{Seawater} \\ \text{at flow velocity v (m/} \\ 0 < v \leq 1.5 \\ 1.5 < v < 4.5 \end{array}$ | s)                         |                             | 20<br>20                    | 1                          | P<br>0                | P<br>0            | P<br>0           | P<br>P                | P<br>0                | 0                  | 0                                   | P<br>0             | 1<br>0                       | 0      |        | 1<br>3 | P<br>1      |                  |          |             |        |
| Siliceous flux acid see fluorsilicic acid                                                                            |                            |                             |                             |                            |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                  |          |             |        |
| <b>Silver nitrate</b><br>AgNO <sub>3</sub>                                                                           | hy<br>hy<br>hy<br>hy<br>me | 10<br>10<br>20<br>40<br>100 | 20<br>bp<br>60<br>20<br>250 | 3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>3 | 0<br>0<br>0<br>0  | 0<br>0<br>0<br>0 | 0                     | 1                     | 1                  | 1                                   | 3                  | 3                            | 3      | 3      | 3      | 3<br>3      | 0<br>0<br>0<br>0 | 0        | 3           |        |
| Soap                                                                                                                 | hy<br>hy<br>hy             | 1<br>1<br>10                | 20<br>75<br>20              | 0<br>0<br>0                | 0<br>0<br>0           | 0<br>0<br>0       | 0<br>0<br>0      |                       | 0                     | 0                  |                                     | 0<br>0             | 0<br>0                       | 1<br>1 | 0<br>0 | 0<br>0 | 0<br>0<br>0 | 0<br>0           |          | 0<br>0<br>0 |        |
| <b>Sodium</b> $(0_2 \le 0.005\%$ Na                                                                                  | %)<br>me                   |                             | 200<br>600                  | 0<br>3                     | 0<br>1                | 0<br>0            | 0<br>0           |                       |                       |                    |                                     |                    |                              |        |        |        |             | 0<br>0           |          | 1           |        |

344 WITZENMANN

(HYDRA®)

# **Resistance table**

| Medium                                                                  |                      |                       |                        |                        |                  |                   |                  |                       |                       |                    | N                                   | later              | ials                         |                |        |        |             |                  |                  |             |        |
|-------------------------------------------------------------------------|----------------------|-----------------------|------------------------|------------------------|------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|-------------|------------------|------------------|-------------|--------|
|                                                                         |                      | Concentration         | Temperature            | s                      |                  | ainle<br>steel    |                  |                       |                       | el al              | loys                                |                    |                              | oppe<br>alloy: |        |        | Р           | ure r            | netal            | s           | 1      |
| Designation<br>Chemical formula                                         |                      | Conce                 | Temp                   | alloy stee             | sle              | steels            | + Mo             | 858 / alloy           | alloy 600             | oy 625             | 319 /alloy                          | oy 400             | ٨٥                           |                |        |        |             |                  |                  |             |        |
|                                                                         |                      | %                     | С                      | Non-/low- alloy steels | Ferritic steels  | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | O Nickel    | Titanium         | Tantalum         | Aluminium   | Silver |
| Sodium acetate<br>CH <sub>3</sub> -COONa                                | hy<br>hy             | 10<br>sa              | 25                     | 0<br>3                 | 0<br>0           | 0<br>0            | 0<br>0           |                       | 0                     | 0                  | 0<br>0                              | 0                  |                              |                |        | 0      | 0           | 0<br>0           | 0<br>0           | 0           | 0      |
| <b>Sodium aluminate</b><br>Na <sub>3</sub> AlO <sub>3</sub>             | hy                   | 100<br>10             | 20<br>25               | 0<br>0                 | 0<br>0           | 0<br>0            | 0<br>0           |                       |                       |                    | 1                                   |                    |                              |                |        |        |             | 0<br>0           |                  | 3           |        |
| <b>Sodium arsenate</b><br>Na <sub>2</sub> HAsO <sub>4</sub>             | hy                   | CS                    |                        | 0                      | 0                | 0                 | 0                |                       |                       |                    |                                     |                    |                              |                |        |        |             | 0                |                  | 0           |        |
| <b>Sodium bicarbonate</b><br>NaHCO <sub>3</sub>                         | hy<br>hy<br>hy       | 100<br>10<br>cs<br>sa | 20<br>20               | 0                      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0  | 0<br>0<br>0<br>0 | 0<br>0                | 1<br>1                | 1<br>0             | 1<br>0<br>1                         | 1<br>1             | 0                            | 3              | 1      | 1<br>0 | 1<br>1      | 0<br>0<br>0<br>0 | 0                | 0<br>0<br>1 |        |
| <b>Sodium bisulphate</b><br>NaHSO <sub>4</sub>                          | hy<br>hy             | all<br>all            | 20<br>bp               | 3<br>3                 | 3<br>3           | 3<br>3            | 0<br>1           | 0<br>0                | 1<br>1                | 1<br>1             | 1<br>1                              | 1<br>1             | 3<br>3                       | 3<br>3         | 1<br>1 | 1<br>3 | 1<br>1      | 0<br>0           | 0<br>0           | 0<br>1      |        |
| <b>Sodium bisulphite</b><br>NaHSO <sub>3</sub>                          | hy<br>hy<br>hy       | 10<br>50<br>50        | 20<br>20<br>bp         | 3<br>3<br>3            | 3<br>0<br>3      | 0<br>0<br>3       | 0<br>0<br>0      |                       |                       |                    | 1<br>1                              | 0<br>0             |                              | 1<br>1         | 0<br>0 | 3<br>3 | 0<br>0      | 0<br>0<br>0      |                  | 0           |        |
| <b>Sodium borate</b><br>NaBo <sub>3</sub> 4 H <sub>2</sub> O<br>(Borax) | hy<br>me             | CS                    |                        | 3                      | 0<br>3           | 0<br>3            | 0<br>3           | 0                     |                       | 0                  | 0<br>3                              | 1                  | 0                            |                |        | 0      |             | 0                | 0                | 1           |        |
| <b>Sodium bromide</b><br>NaBr                                           | hy<br>hy             | all<br>all            | 20<br>bp               | 3<br>3                 | 3<br>3           | 3<br>3            | P<br>P           |                       |                       |                    | 1<br>1                              |                    |                              |                |        |        |             | 0<br>0           |                  | 3<br>3      |        |
| <b>Sodium carbonate</b><br>Na <sub>2</sub> CO <sub>3</sub>              | hy<br>hy<br>hy<br>me | 1<br>all              | 20<br>bp<br>400<br>900 | 3<br>3<br>3            | 0<br>0<br>3<br>3 | 0<br>0<br>3<br>3  | 0<br>0<br>3<br>3 | 0<br>0                | 1<br>0                | 0<br>0             | 0<br>0                              | 0                  | 0                            |                |        | 0      | 0<br>0<br>0 | 0<br>0           | 0<br>0           | 2<br>3      |        |
| <b>Sodium chloride</b><br>NaCl                                          | hy<br>hy<br>hy<br>hy | 0.5<br>2<br>cs<br>sa  | 20<br>20               | 3<br>3                 | P<br>P<br>3      | P<br>P<br>9<br>3  | P<br>P<br>P      | 0<br>0<br>0<br>0      | 1<br>1<br>1           | 0<br>0<br>0<br>0   | 0<br>0<br>0<br>1                    | 0<br>0<br>0<br>0   | 0<br>0<br>0<br>0             |                |        | 0<br>0 | 1<br>1<br>1 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 2<br>3      | 0      |
| <b>Sodium chlorite</b><br>NaClO <sub>2</sub>                            | dr<br>hy<br>hy<br>hy | 100<br>5<br>5<br>10   | 20<br>20<br>bp<br>80   | 3<br>3                 | Р                | P<br>3<br>3<br>3  | 0<br>P<br>3<br>P |                       | 0                     |                    | 1                                   |                    |                              |                |        |        |             | 0<br>0<br>0<br>0 |                  |             |        |
| <b>Sodium chromate</b><br>Na <sub>2</sub> CrO <sub>4</sub>              | hy                   | all                   | bp                     | 0                      | 0                | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0              | 0      | 0      |             |                  |                  | 0           |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                         |                            |                       |                                         |                       |                                                                       |                                                                         | N                                                                                           | later              | ials                         |                |        |        |                                                                              |                       |                       |                            |        |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------------------------|-----------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|------------------------------|----------------|--------|--------|------------------------------------------------------------------------------|-----------------------|-----------------------|----------------------------|--------|
|                                                                             |                                                                               | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature                       | s                                                                       |                            | ainle<br>steel:       |                                         |                       | Nick                                                                  | el al                                                                   | loys                                                                                        |                    |                              | oppe<br>alloys |        |        | Ρ                                                                            | ure r                 | netal                 | s                          |        |
| <b>Designation</b><br>Chemical formula                                      |                                                                               | Conce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tempe                             | alloy steel                                                             | s                          | steels                | + Mo                                    | 358 / al loy          | alloy 600                                                             | oy 625                                                                  | 819 /alloy                                                                                  | y 400              | λ                            |                |        |        |                                                                              |                       |                       |                            |        |
|                                                                             |                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                 | Non-/Iow- alloy steels                                                  | Ferritic steels            | Austenitic steels     | Austenitic + Mo                         | steels 2.4858 / alloy | 8252.4816 / alloy 600                                                 | 2.4856 / alloy 625                                                      | 2.4610, 2.4819 /alloy<br>C-4, C-246                                                         | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel                                                                       | Titanium              | Tantalum              | Aluminium                  | Silvar |
| <b>Sodium cyanide</b><br>NaCN                                               | me<br>hy                                                                      | cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                               | 1                                                                       | 0                          | 0                     | 0                                       |                       |                                                                       |                                                                         |                                                                                             | 3<br>3             | 3<br>1                       | 3<br>3         | 3<br>3 | 3<br>3 | 0                                                                            | 0                     |                       | 3<br>3                     | 3<br>3 |
| <b>Sodium fluoride</b><br>NaF                                               | hy<br>hy<br>hy                                                                | 10<br>10<br>cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>bp                          | 0<br>0                                                                  |                            | 0<br>0<br>S           | 0<br>0<br>S                             |                       |                                                                       |                                                                         |                                                                                             |                    |                              |                | 3      |        |                                                                              |                       |                       | 0<br>0                     |        |
| Sodium hydrogensulp<br>see sodium bisulphat                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                         |                            |                       |                                         |                       |                                                                       |                                                                         |                                                                                             |                    |                              |                |        |        |                                                                              |                       |                       |                            |        |
| Sodium hydrogensulp<br>see sodium bisulphite                                | hite                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                         |                            |                       |                                         |                       |                                                                       |                                                                         |                                                                                             |                    |                              |                |        |        |                                                                              |                       |                       |                            |        |
| Sodium hydroxide<br>NaOH                                                    | solid<br>hy<br>hy<br>hy<br>hy<br>hy<br>hy<br>hy<br>hy<br>hy<br>hy<br>hy<br>hy | $\begin{array}{c} 100 \\ < 10 \\ < 20 \\ < 20 \\ < 40 \\ < 50 \\ < 55 \\ < 56 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 66 \\ < 6$ |                                   | $\begin{smallmatrix} 0 \\ 0 \\ 3 \\ 0 \\ 3 \\ 0 \\ 3 \\ 0 \\ 3 \\ 3 \\$ | 00303033033333333          | 00000030030333        | 000000000000000000000000000000000000000 |                       | $\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0                  |                              |                |        |        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                       |                       |                            | 0      |
| <b>Sodium hypochlorite</b><br>NaOCI                                         | hy<br>hy                                                                      | 5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>50                          | 3<br>3                                                                  | 3                          | 3<br>P                | P<br>P                                  | 0                     | 3<br>0                                                                |                                                                         | 0<br>1                                                                                      | 3                  | 3                            |                |        | 3      | 3                                                                            | 0<br>0                |                       | 3<br>3                     |        |
| <b>Sodium hyposulphite</b><br>Na <sub>2</sub> S <sub>2</sub> O <sub>4</sub> |                                                                               | all<br>all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>bp                          |                                                                         | 3<br>3                     | 0<br>0                | 0<br>0                                  | 0<br>0                | 1<br>1                                                                | 1<br>1                                                                  | 1<br>1                                                                                      | 1<br>1             | 3<br>3                       |                |        | 3<br>3 | 1<br>1                                                                       |                       | 0<br>0                |                            |        |
| <b>Sodium iodide</b><br>NaJ                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                         | Р                          | Р                     | Ρ                                       | 0                     | 0                                                                     | 0                                                                       | 0                                                                                           |                    |                              |                |        |        | 0                                                                            |                       |                       | 1                          |        |
| <b>Sodium nitrate</b><br>NaNO <sub>3</sub>                                  | hy<br>hy<br>hy<br>hy<br>hy<br>me                                              | 5<br>10<br><10<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>20<br>20<br>20<br>5p<br>320 | 3<br>1<br>3<br>1<br>1<br>3                                              | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0           | 0<br>0<br>0<br>0                                                      | 0<br>0<br>1                                                             | 0<br>1<br>0<br>1<br>3<br>0                                                                  | 1<br>1<br>1        | 0<br>0<br>0                  | 3              | 1      | 0<br>1 | 1<br>1<br>1<br>1<br>1                                                        | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>3<br>0<br>0<br>0 | 3      |
| <b>Sodium nitrite</b><br>NaNO <sub>2</sub>                                  | hy                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                |                                                                         |                            | 0                     | 0                                       | 1                     | 0                                                                     | 0                                                                       | 0                                                                                           | 0                  | 0                            |                |        | 1      | 3                                                                            | 0                     | 0                     | 1                          |        |

(HYDRA®)

# **Resistance table**

| Medium                                                                            |                |                     |                 |                        |                  |                   |                  |                       |                       |                    | N                                   | later              | ials                         |                |        |        |             |                  |             |                  |        |
|-----------------------------------------------------------------------------------|----------------|---------------------|-----------------|------------------------|------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|----------------|--------|--------|-------------|------------------|-------------|------------------|--------|
|                                                                                   |                | Concentration       | Temperature     | ls                     |                  | ainle<br>steel:   |                  |                       |                       | cel al             | loys                                |                    |                              | oppe<br>alloy: |        |        | Р           | ure r            | netal       | s                |        |
| Designation<br>Chemical formula                                                   |                | Conce               | Tempo           | alloy stee             | sla              | steels            | + Mo             | 358 / alloy           | alloy 600             | oy 625             | 319 /alloy                          | oy 400             | λc                           |                |        |        |             |                  |             |                  |        |
|                                                                                   |                | %                   | с               | Non-/low- alloy steels | Ferritic steels  | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper | Nickel      | Titanium         | Tantalum    | Aluminium        | Silver |
| $\begin{array}{l} \textbf{Sodium perborate} \\ \text{NaBO}_2 \end{array}$         | hy<br>hy       | 10<br>10            | 20<br>bp        | 3<br>3                 | 0<br>0           | 0<br>0            | 0<br>0           |                       |                       |                    | 1<br>1                              |                    |                              |                |        |        |             | 1<br>1           |             |                  |        |
| Sodium perchlorate NaClO <sub>4</sub>                                             | hy<br>hy       | 10<br>10            | 20<br>bp        | 3<br>3                 | 3                | 0<br>0            | 0<br>0           | 1<br>1                |                       |                    | 1<br>1                              |                    |                              |                |        |        |             | 0<br>0           |             |                  |        |
| <b>Sodium peroxide</b><br>Na <sub>2</sub> O <sub>2</sub>                          | hy<br>hy<br>me | 10<br>10            | 20<br>bp<br>460 | 3<br>3                 | 1<br>3           | 0<br>0            | 0<br>0           | 1<br>1<br>3           | 1<br>1<br>1           | 1<br>1             | 1<br>1<br>3                         | 0<br>0<br>3        | 3<br>3                       |                |        | 3<br>3 | 0<br>1<br>0 | 3<br>3           | 3<br>3      | 3<br>3           | 3<br>3 |
| <b>Sodium phosphate</b><br>Na <sub>2</sub> HPO <sub>4</sub>                       | hy<br>hy<br>hy | 10<br>10<br>cs      | 20<br>bp        |                        | 0<br>0<br>0      | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>0<br>0           | 0<br>0<br>0        | 0 0 0                               | 0<br>0<br>0        | 0                            | 3              | 1      | 1<br>3 | 0<br>0      | 0<br>0<br>0      | 0<br>0<br>0 | 0<br>1<br>0      |        |
| <b>Sodium salicylate</b><br>C <sub>6</sub> H <sub>4</sub> (OH)COONa               | hy             | all                 | 20              |                        | 0                | 0                 | 0                | 0                     |                       |                    | 0                                   |                    |                              |                |        | 0      | 0           | 0                |             | 0                |        |
| <b>Sodium silicofluoride</b><br>Na <sub>2</sub> (SiF <sub>6</sub> )               | e hy           | CS                  |                 | 3                      | 3                | 3                 | 3                | 0                     | 0                     | 1                  | 1                                   | 0                  |                              |                |        | 0      |             |                  |             | 1                |        |
| $\frac{\text{Sodium sulphate}}{\text{Na}_2\text{SO}_4}$                           | hy<br>hy<br>hy | 10<br>cs<br>sa      | 20              | 3<br>3<br>3            | 0<br>1<br>3      | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>1<br>0           | 0<br>0<br>0        | 0<br>0<br>0                         | 0<br>1<br>0        | 0<br>0                       | 0              | 0      | 0<br>0 | 0<br>1      | 0<br>0<br>0      | 0<br>0<br>0 | 0<br>0<br>1      |        |
| <b>Sodium sulphide</b><br>Na <sub>2</sub> S                                       | hy<br>hy<br>hy | 1<br>cs<br>sa       | 20<br>20        | 3<br>3<br>3            | 0<br>3<br>3      | 0<br>3<br>3       | 0<br>0<br>1      | 0<br>0                | 0<br>1                | 0                  | 0                                   | 1                  | 3                            |                |        | 3      | 1<br>1      | 0<br>0<br>0      | 0           | 1<br>3           |        |
| $\begin{array}{c} \textbf{Sodium sulphite} \\ \text{Na}_2\text{SO}_3 \end{array}$ | hy<br>hy       | 10<br>50            | 20<br>bp        | 3<br>3                 | 1<br>3           | 0<br>0            | 0<br>0           |                       |                       |                    |                                     | 0                  | 1                            | 3              | 1      | 1      |             | 0<br>0           |             | 0<br>3           |        |
| Sodium superoxide see sodium peroxide                                             |                |                     |                 |                        |                  |                   |                  |                       |                       |                    |                                     |                    |                              |                |        |        |             |                  |             |                  |        |
| Sodium tetraborate<br>see borax                                                   |                |                     |                 |                        |                  |                   |                  |                       |                       |                    |                                     |                    |                              |                |        |        |             |                  |             |                  |        |
|                                                                                   | hy<br>hy<br>hy | 1<br>10<br>25<br>cs | 20<br>20<br>bp  | 1<br>3<br>3<br>3       | 0<br>0<br>P<br>3 | 0<br>0<br>P<br>0  | 0<br>0<br>P<br>0 |                       | 1                     |                    |                                     | 0                  | 3                            |                |        | 3      | 0<br>0<br>1 | 0<br>0<br>0<br>0 | 0           | 0<br>0<br>1<br>0 |        |
| Spirit of terpentine                                                              |                | 100<br>100          | 20<br>bp        | 3<br>3                 | 0                | 0<br>0            | 0                |                       |                       |                    |                                     |                    | 0<br>0                       | 1<br>1         | 0<br>0 | 0<br>0 |             | 0<br>0           |             | 0<br>0           |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                                     |                                        |                                                                                                         |                                                                                              |                                         |                                                |                                                                                                  |                                                                         |                       |                       |                    | N                                                             | later                      | ials                         |                |        |                            |                  |                                                                                             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|-----------------------|--------------------|---------------------------------------------------------------|----------------------------|------------------------------|----------------|--------|----------------------------|------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                            |                                        | Concentration                                                                                           | Temperature                                                                                  | s                                       |                                                | ainle<br>steel:                                                                                  |                                                                         |                       | Nick                  | el al              | loys                                                          |                            |                              | oppe<br>alloys |        |                            | Ρ                | ure r                                                                                       | netal                                                                   | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| Designation<br>Chemical formula                            |                                        | % Conce                                                                                                 | C Tempe                                                                                      | Non-/low- alloy steels                  | Ferritic steels                                | Austenitic steels                                                                                | Austenitic + Mo                                                         | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246                           | 2.4360 / alloy 400         | 2.0882 / alloy<br>CuNi 70/30 | Tombac         | Bronze | Copper                     | Nickel           | Titanium                                                                                    | Tantalum                                                                | Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Silver |
| Spirits                                                    |                                        |                                                                                                         | 20<br>bp                                                                                     | 2<br>1<br>3                             | 0                                              | ▼<br>0<br>0                                                                                      | 0<br>0                                                                  | 0<br>St               | 0<br>0                | 0 0                | 0                                                             | 0 2                        | C :2                         | 4              | B      | 0                          | z                | -                                                                                           | 2                                                                       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S      |
| Steam $0_2 < 1 \text{ ppm}$ ; Cl < 10                      | ppm                                    |                                                                                                         | < 560<br>< 315<br>> 450                                                                      | 1<br>S<br>S                             | 1<br>S<br>S                                    | 1<br>S<br>S                                                                                      | 0<br>S<br>S                                                             |                       |                       |                    | 0<br>0<br>0                                                   |                            |                              |                |        |                            | 0                | 0<br>0<br>0                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Stearic acid $CH_3(CH_2)_{16}COOH$                         |                                        | 100<br>100<br>100                                                                                       | 20<br>95<br>180                                                                              | 1<br>3                                  | 0<br>0                                         | 0                                                                                                | 0<br>0                                                                  | 0                     | 0<br>1                | 0                  | 0<br>0<br>1                                                   | 0<br>1                     | 1<br>1                       | 3              | 1      | 1<br>0                     | 0<br>1           | 0<br>0<br>0                                                                                 | 0                                                                       | 0<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0      |
| Succinic acid<br>HOOC-CH <sub>2</sub> -CH <sub>2</sub> -CO | OH                                     |                                                                                                         | bp                                                                                           | 1                                       | 0                                              | 0                                                                                                | 0                                                                       | 0                     | 0                     | 0                  | 0                                                             | 0                          | 0                            | 0              | 0      |                            |                  |                                                                                             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| <b>Sulphur</b><br>S                                        | dr<br>me<br>me<br>mo                   | 100                                                                                                     | 60<br>130<br>240<br>20                                                                       | 0<br>1<br>3<br>3                        | 0<br>0<br>0<br>2                               | 0<br>0<br>0<br>1                                                                                 | 0<br>0<br>0<br>0                                                        |                       | 0                     |                    | 0<br>0<br>0<br>0                                              | 3<br>3                     | 3<br>3                       | 3<br>3         | 3<br>3 | 3<br>3<br>3                | 0<br>3<br>3      | 0<br>0<br>0                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3      |
| Sulphur dioxide<br>SO <sub>2</sub>                         | dr<br>dr<br>dr<br>dr<br>mo<br>mo<br>mo | 100<br>100<br>100<br>100<br>100<br>100<br>100                                                           | 20<br>60<br>400<br>800<br>20<br>60<br>70                                                     | 0333333333                              | 0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>1<br>3<br>3<br>3<br>3<br>3                                                                  | 0<br>1<br>0<br>3<br>0<br>0<br>3                                         | 0                     | 0                     | 0                  | 0<br>0<br>1<br>3<br>0<br>0<br>0                               | 1                          | 0<br>3                       | 0<br>3<br>3    | 0      | 0<br>3                     | 0<br>3<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0                                                                       | 0<br>0<br>0<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>3 |
| Sulphuric acid<br>H <sub>2</sub> SO <sub>4</sub>           |                                        | 0.05<br>0.05<br>0.1<br>0.2<br>0.8<br>1<br>3<br>5<br>7.5<br>10<br>25<br>25<br>25<br>25<br>40<br>40<br>50 | 20<br>bp<br>20<br>bp<br>20<br>bp<br>20<br>bp<br>20<br>bp<br>20<br>bp<br>20<br>bp<br>20<br>bp | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 113333333333333333333333333333333333333        | 0<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | $\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 0 \\ 3 \\ 3 \\ 3 \\ 3 \\$ | 1<br>1<br>3           | 1<br>3<br>3<br>3<br>3 | 0                  | 0<br>1<br>3<br>0<br>3<br>0<br>3<br>0<br>3<br>0<br>3<br>0<br>3 | 1<br>1<br>3<br>1<br>3<br>3 | 333 33333333                 | 3              | 3      | 1<br>3<br>3<br>3<br>3<br>3 | 0<br>3<br>3<br>3 | 0<br>1<br>0<br>1<br>1<br>0<br>1<br>3<br>3<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $\frac{1}{3} \frac{3}{1} \frac{3}{3} \frac{1}{3} \frac{3}{1} \frac{1}{3} \frac{3}{1} \frac{1}{3} \frac{3}{3} \frac{3}$ | 1      |

(HYDRA®)

# **Resistance table**

| Medium                                                                                               |                                  |                                  |                                  |                                 |                       |                       |                       |                       |                       |                    | N                                   | later              | ials                         |                  |                  |                  |                  |                            |                       |                  |        |
|------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|------------------|------------------|------------------|------------------|----------------------------|-----------------------|------------------|--------|
|                                                                                                      |                                  | Concentration                    | Temperature                      | s                               |                       | ainle<br>steel:       |                       |                       |                       | el al              | loys                                |                    |                              | oppe<br>alloys   |                  |                  | Р                | ure r                      | netal                 | s                |        |
| Designation<br>Chemical formula                                                                      |                                  | Conce                            | Tempi                            | alloy stee                      | s                     | steels                | - Mo                  | 358 / alloy           | alloy 600             | oy 625             | 19 /alloy                           | y 400              | Ŋ                            |                  |                  |                  |                  |                            |                       |                  |        |
|                                                                                                      |                                  | %                                | С                                | Non-/low- alloy steels          | Ferritic steels       | Austenitic steels     | Austenitic + Mo       | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac           | Bronze           | Copper           | Nickel           | S Titanium                 | Tantalum              | Aluminium        | Silver |
| Sulphuric acid $H_2SO_4$                                                                             |                                  | 60<br>80<br>90<br>96             | 20<br>20<br>20<br>20             | 3<br>3<br>3<br>1                | 3<br>3<br>3<br>1      | 3<br>1<br>1<br>1      | 3<br>1<br>0<br>0      |                       |                       |                    | 0<br>0<br>0<br>0                    | 1<br>1<br>3        | 3                            | 3<br>3           | 3<br>1           | 3<br>1<br>1      | 0                | 3<br>3<br>3<br>3           | 0<br>0<br>0<br>0      | 3<br>3<br>3<br>3 |        |
| <b>Sulphurous acid</b><br>H <sub>2</sub> SO <sub>3</sub>                                             | hy<br>hy<br>hy                   | 1<br>cs<br>sa                    | 20                               | 3<br>3<br>3                     | 3<br>3<br>3           | 0<br>0<br>1           | 0<br>0<br>0           |                       | 1                     |                    | 0<br>0<br>1                         | 3<br>3             |                              |                  |                  |                  | 3                | 1                          | 0<br>0<br>0           | 1<br>3<br>3      |        |
| <b>Sulphur trioxide</b><br>SO <sub>3</sub>                                                           | hy<br>dr                         | 100<br>100                       | 20<br>20                         | 0                               |                       |                       |                       | 2                     | 3                     |                    | 0                                   | 3                  | 2                            | 0                | 0                | 0                | 3                |                            | 3                     | 3<br>0           |        |
| $\begin{array}{l} \textbf{Tannic acid} \\ \textbf{C}_{76}\textbf{H}_{52}\textbf{O}_{46} \end{array}$ | hy<br>hy<br>hy                   | 5<br>25<br>50                    | 20<br>100<br>bp                  | 3<br>3<br>3                     | 0<br>3<br>3           | 0<br>0<br>0           | 0<br>0<br>0           |                       | 0                     |                    |                                     | 0                  | 0                            | 1                | 0                | 0                | 0                | 0<br>0<br>0                |                       | 0                |        |
| Tar                                                                                                  |                                  |                                  | 20                               | 0                               | 0                     | 0                     | 0                     |                       |                       |                    |                                     |                    | 0                            | 1                | 0                | 0                |                  | 0                          |                       | 1                |        |
| Tartaric acid                                                                                        | hy<br>hy<br>hy<br>hy<br>hy<br>hy | 10<br>10<br>25<br>25<br>50<br>50 | 20<br>bp<br>20<br>bp<br>20<br>bp | 1<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>1<br>3<br>3<br>3 | 0<br>0<br>1<br>0<br>3 | 0<br>0<br>0<br>0<br>3 | 0                     | 1<br>3<br>0<br>0      | 0                  | 0<br>1<br>0<br>1<br>0<br>1          | 1<br>3<br>0<br>1   | 0<br>0<br>0<br>0<br>0        | 3<br>3           | 0                | 0<br>1           | 1<br>3           | 0<br>1<br>0<br>1<br>0<br>3 | 0<br>0<br>0<br>0<br>0 | 333333           |        |
| Tetrachloroethane see acetylen tetrach                                                               | loride                           |                                  |                                  |                                 |                       |                       |                       |                       |                       |                    |                                     |                    |                              |                  |                  |                  |                  |                            |                       |                  |        |
| Tetrachloroethylene                                                                                  | pure<br>pure<br>mo<br>mo         | 100<br>100                       | 20<br>bp<br>20<br>bp             | 0<br>3<br>3                     | 0<br>3<br>3           | 0<br>0<br>P<br>P      | 0<br>0<br>P<br>P      |                       |                       |                    | 0<br>0<br>0<br>0                    |                    | 0<br>0<br>1<br>1             | 0<br>0<br>3<br>3 | 0<br>0<br>1<br>1 | 0<br>0<br>1<br>1 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0           |                       | 0<br>0<br>3<br>3 |        |
| <b>Tin chloride</b><br>SnCl <sub>2</sub> ; SnCl <sub>4</sub>                                         |                                  | 5<br>sa                          | 20                               | 3<br>3                          | 3<br>3                | 3<br>3                | 3<br>3                | 3                     | 3                     |                    | 0                                   | 1                  | 3                            |                  |                  |                  | 1                | 0                          | 0                     | 3                |        |
| Toluene<br>C <sub>6</sub> H <sub>5</sub> -CH <sub>3</sub>                                            |                                  | 100<br>100                       | 20<br>bp                         | 0<br>0                          | 0<br>0                | 0<br>0                | 0<br>0                |                       |                       |                    |                                     | 0<br>0             | 0<br>0                       | 0<br>0           | 0<br>0           | 0<br>0           |                  | 0<br>0                     |                       | 0<br>0           |        |
| Town gas                                                                                             |                                  |                                  |                                  | 0                               | 0                     | 0                     | 0                     | 0                     | 0                     | 0                  | 0                                   | 1                  | 1                            | 0                | 0                | 1                | 1                |                            |                       |                  |        |
| Trichloroacetaldehy<br>see chloral                                                                   | de                               |                                  |                                  |                                 |                       |                       |                       |                       |                       |                    |                                     |                    |                              |                  |                  |                  |                  |                            |                       |                  |        |
| Trichloroethylene<br>CHCI=CCI <sub>2</sub>                                                           | pure<br>pure<br>mo<br>mo         | 100<br>100                       | 20<br>bp<br>20<br>bp             | 0<br>3<br>3                     | 0<br>3<br>3           | 0<br>0<br>P<br>P      | 0<br>0<br>P<br>P      |                       |                       |                    | 0<br>0<br>0<br>0                    |                    | 0<br>0<br>1<br>1             | 0<br>0<br>3<br>3 | 0<br>0<br>1<br>1 | 0<br>0<br>1<br>1 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0           |                       | 0<br>0<br>3<br>3 |        |

# 7.4 Corrosion resistance

#### **Resistance table**

| Medium                                        |                            |                           |                            |                        |                       |                   |                  |                       |                       |                    | N                                   | later              | ials                         |        |        |        |             |                       |                  |                       |        |
|-----------------------------------------------|----------------------------|---------------------------|----------------------------|------------------------|-----------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------|--------|--------|-------------|-----------------------|------------------|-----------------------|--------|
|                                               |                            | Concentration             | Temperature                | s                      |                       | ainle<br>steel:   |                  |                       | Nick                  | el al              | loys                                |                    |                              | oppe   |        |        | Ρ           | ure r                 | netal            | s                     |        |
| Designation<br>Chemical formula               |                            | Conce                     | Tempe                      | Von-/low- alloy steels | els                   | steels            | + Mo             | 858 / alloy           | alloy 600             | oy 625             | 819 /alloy                          | oy 400             | oy                           |        |        |        |             |                       |                  |                       |        |
|                                               |                            | %                         | С                          | Non-/low-              | Ferritic steels       | Austenitic steels | Austenitic + Mo  | steels 2.4858 / alloy | 8252.4816 / alloy 600 | 2.4856 / alloy 625 | 2.4610, 2.4819 /alloy<br>C-4, C-246 | 2.4360 / alloy 400 | 2.0882 / alloy<br>CuNi 70/30 | Tombac | Bronze | Copper | Nickel      | Titanium              | Tantalum         | Aluminium             | Silver |
| Trichloromethane<br>see chloroform            |                            |                           |                            |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                       |                  |                       |        |
| Tricresylphosphate                            |                            |                           |                            | 0                      | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   |                    |                              |        |        | 0      |             |                       |                  |                       | 0      |
| Trinitrophenol<br>see picric acid             |                            |                           |                            |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                       |                  |                       |        |
| Trichloroacetic acid<br>see chloroacetic acid | I                          |                           |                            |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                       |                  |                       |        |
| Urea<br>CO(NH <sub>2</sub> ) <sub>2</sub>     |                            | 100<br>100                | 20<br>150                  | 0<br>3                 | 0                     | 0<br>1            | 0<br>0           |                       | 3                     |                    | 0<br>1                              | 0<br>1             |                              |        |        |        | 0<br>1      | 0<br>0                | 0<br>0           | 0<br>3                | 1      |
| Uric acid $C_5H_4O_4N_3$                      | hy<br>hy                   |                           | 20<br>100                  | 3<br>3                 | 0<br>0                | 0<br>0            | 0<br>0           | 0<br>0                | 1<br>1                | 0<br>0             | 0<br>0                              | 0<br>0             | 0<br>0                       |        |        | 1<br>1 |             | 0<br>0                |                  | 3<br>3                |        |
| Vinyl chloride<br>CH <sub>2</sub> =CHCl       | dr                         |                           | 20<br><400                 | 0<br>0                 | 0<br>0                | 0<br>0            | 0<br>0           |                       |                       |                    | 0<br>0                              |                    |                              |        | 0      |        | 0           | 0                     |                  | 0                     |        |
| Water vapour<br>see steam                     |                            |                           |                            |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                       |                  |                       |        |
| Wine                                          |                            |                           | 20<br>bp                   | 3<br>3                 | 0<br>0                | 0<br>0            | 0<br>0           |                       | 0<br>0                |                    |                                     |                    |                              | 3<br>3 | 3<br>3 |        | 3<br>3      |                       | 0<br>0           | 3<br>3                |        |
| Yeast                                         |                            |                           | 20                         | 1                      | 0                     | 0                 | 0                | 0                     | 0                     | 0                  | 0                                   | 0                  | 0                            | 0      | 0      | 0      | 0           | 0                     | 0                | 0                     | 0      |
| Yellow potassium pru<br>see potassium ferricy |                            |                           |                            |                        |                       |                   |                  |                       |                       |                    |                                     |                    |                              |        |        |        |             |                       |                  |                       |        |
| Zinc chloride<br>ZnCl <sub>2</sub>            | hy<br>hy<br>hy<br>hy<br>hy | 5<br>5<br>10<br>20<br>75  | 20<br>bp<br>20<br>20<br>20 | 33333                  | P<br>3<br>P<br>9<br>3 | P<br>3<br>P<br>P  | P<br>3<br>P<br>P | 0<br>0                | 1<br>3                | 0                  | 0<br>1                              | 1<br>3<br>3        | 3<br>3<br>3                  | 3      | 3      |        | 1<br>1<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 3<br>3<br>0           |        |
| Zinc sulphate<br>ZnSO4                        | hy<br>hy<br>hy<br>hy<br>hy | 2<br>20<br>30<br>cs<br>sa | 20<br>bp<br>bp             | 3 3 3 3 3 3            | 0<br>0<br>3<br>0<br>3 | 0<br>0<br>0<br>0  | 0<br>0<br>0<br>0 | 0                     | 1                     | 0                  | 0<br>1<br>1<br>1                    | 1                  | 0                            |        |        |        | 1           | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>3<br>3<br>1<br>3 |        |

(HYDRA®)

# 7.5. Conversion tables and formula symbols

#### Steam table

| Pressure<br>(absolute) | Saturation temperature | Kinematic viscosity<br>of steam    | Density of steam |
|------------------------|------------------------|------------------------------------|------------------|
| bar                    | <b>0°</b>              | 10 <sup>-6</sup> m <sup>2</sup> /s | kg/m³            |
| р                      | t                      | ν <sup>n</sup>                     | ρ <sup>n</sup>   |
| 0.020                  | 17,513                 | 650,240                            | 0.01492          |
| 0.040                  | 28,983                 | 345,295                            | 0.02873          |
| 0.060                  | 36,183                 | 240,676                            | 0.04212          |
| 0.080                  | 41,534                 | 186,720                            | 0.05523          |
| 0.10                   | 45,833                 | 153,456                            | 0.06814          |
| 0.14                   | 52,574                 | 114,244                            | 0.09351          |
| 0.20                   | 60,086                 | 83,612                             | 0.1307           |
| 0.25                   | 64,992                 | 68,802                             | 0.1612           |
| 0.30                   | 69,124                 | 58,690                             | 0.1912           |
| 0.40                   | 75,886                 | 45,699                             | 0.2504           |
| 0.45                   | 78,743                 | 41,262                             | 0.2796           |
| 0.50                   | 81,345                 | 37,665                             | 0.3086           |
| 0.60                   | 85,954                 | 32,177                             | 0.3661           |
| 0.70                   | 89,959                 | 28,178                             | 0.4229           |
| 0.80                   | 93,512                 | 25,126                             | 0.4792           |
| 0.90                   | 96,713                 | 22,716                             | 0.5350           |
| 1.0                    | 99,632                 | 20,760                             | 0.5904           |
| 1.5                    | 111.37                 | 14,683                             | 0.8628           |
| 2.0                    | 120.23                 | 11,483                             | 1,129            |
| 2.5                    | 127.43                 | 9,494                              | 1,392            |
| 3.0                    | 133.54                 | 8,130                              | 1,651            |
| 3.5                    | 138.87                 | 7,132                              | 1,908            |
| 4.0                    | 143.62                 | 6,367                              | 2,163            |
| 4.5                    | 147.92                 | 5,760                              | 2,417            |

# 7.5. Conversion tables and formula symbols

#### Steam table

| Pressure<br>(absolute) | Saturation temperature | Kinematic viscosity<br>of steam | Density of steam  |  |
|------------------------|------------------------|---------------------------------|-------------------|--|
| bar                    | 0°                     | 10 <sup>-6</sup> m²/s           | kg/m <sup>3</sup> |  |
| р                      | t                      | ν <sup>n</sup>                  | ρ <sup>n</sup>    |  |
| 5.0                    | 151.84                 | 5,268                           | 2,669             |  |
| 6.0                    | 158.84                 | 4,511                           | 3,170             |  |
| 7.0                    | 164.96                 | 3,956                           | 3,667             |  |
| 8.0                    | 170.41                 | 3,531                           | 4,162             |  |
| 9.0                    | 175.36                 | 3,193                           | 4,655             |  |
| 10.0                   | 179.88                 | 2,918                           | 5,147             |  |
| 11.0                   | 184.07                 | 2,689                           | 5,637             |  |
| 12.0                   | 187.96                 | 2,496                           | 6,127             |  |
| 13.0                   | 191.61                 | 191.61 2,330 6,61               |                   |  |
| 14.0                   | 195.04                 | 2,187                           | 7,106             |  |
| 15.0                   | 198.29                 | 2,061                           | 7,596             |  |
| 20.0                   | 212.37                 | 1,609                           | 10.03             |  |
| 25.0                   | 223.94                 | 223.94 1,323 12.                |                   |  |
| 30.0                   | 233.84                 | 1,126                           | 15.01             |  |
| 34.0                   | 240.88                 | 1,008                           | 17.03             |  |
| 38.0                   | 247.31                 | 0.913                           | 19.07             |  |
| 40.0                   | 250.33                 | 0.872                           | 20.10             |  |
| 45.0                   | 257.41                 | 0.784 22.68                     |                   |  |
| 50.0                   | 263.91                 | 0.712                           | 25.33             |  |
| 55.0                   | 269.93                 | 0.652                           | 28.03             |  |
| 60.0                   | 275.55                 | 0.601 30.79                     |                   |  |
| 65.0                   | 280.82                 | 0.558 33.62                     |                   |  |
| 70.0                   | 285.79                 | 0.519                           | 36.51             |  |
| 75.0                   | 290.50                 | 0.486                           | 39.48             |  |

(HYDRA®)

# 7.5. Conversion tables and formula symbols

| 1    | Temperatur              | e                  | Saturate | d steam      |     | Pressure     |                                                                                                                      |
|------|-------------------------|--------------------|----------|--------------|-----|--------------|----------------------------------------------------------------------------------------------------------------------|
| °C   | К                       | deg F              | °C       | bar          | bar | MPa          | psi                                                                                                                  |
| 600  | - 900 -                 | 1200               | 350 —    | - 200        | 300 | 30 -<br>20 - |                                                                                                                      |
| 500  | - 800 -                 | 1000               | 300 -    |              |     | 10 -<br>5    |                                                                                                                      |
| 400  | - 700 -                 | 800<br>1<br>1<br>1 | 250 —    | - 50         | 20  | 2            | <b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
| 300  | - 600 -                 |                    | 200      | - 30<br>-    |     | 1 -          | 100                                                                                                                  |
| 200  | - 500 -                 | 400                | 200      | 10           | 5   | 0.5          |                                                                                                                      |
| 100  | - 400 -<br>-<br>- 300 - | 200                | 150 -    | 5            |     | 0.2<br>0.1 - |                                                                                                                      |
|      | - 200 -                 |                    | 100 -    | — 1<br>— 0.5 | 0.5 | 0.05         |                                                                                                                      |
| -100 | - 100 -                 | -200               | 50 -     | - 0.1        | 0.2 | 0.02         |                                                                                                                      |
| -200 | - 0 -                   | -400               | 0        | 0.01         | 0.1 | 0.01 -       |                                                                                                                      |

# Temperatures, saturated steam, pressure

# 7.5. Conversion tables and formula symbols

# Greek alphabet

| α  | Alpha   | Α | Alpha   |
|----|---------|---|---------|
| β  | Beta    | В | Beta    |
| γ  | Gamma   | Г | Gamma   |
| δ  | Delta   | Δ | Delta   |
| ε  | Epsilon | Е | Epsilon |
| ζ  | Zeta    | Z | Zeta    |
| η  | Eta     | Н | Eta     |
| θθ | Theta   | Θ | Theta   |
| ι  | Jota    | Ι | Jota    |
| ×  | Карра   | K | Карра   |
| λ  | Lambda  | Λ | Lambda  |
| μ  | My      | М | My      |
| ν  | Ny      | Ν | Ny      |
| ξ  | Xi      | Ξ | Xi      |
| 0  | Omicron | 0 | Omicron |
| π  | Pi      | П | Pi      |
| Q  | Rho     | Р | Rho     |
| σς | Sigma   | Σ | Sigma   |
| τ  | Dew     | Т | Dew     |
| υ  | Υ       | Ŷ | Y       |
| φ  | Phi     | Φ | Phi     |
| x  | Chi     | Х | Chi     |
| ψ  | Psi     | Ψ | Psi     |
| ω  | Omega   | Ω | Omega   |
|    |         |   |         |



# 7.5. Conversion tables and formula symbols

# Formula symbols used

| Formula<br>symbol     | Meaning                                                                                                    |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A                     | Hydraulically effective cross-sectional area of hose                                                       |  |  |  |  |
| A <sub>D</sub>        | Cross-sectional area of a single wire for braidings                                                        |  |  |  |  |
| Cw                    | Weld seam factor to reduce stability                                                                       |  |  |  |  |
| Ct                    | Pressure reduction coefficient for operating temperatures > 20 °C                                          |  |  |  |  |
| <b>D</b> <sub>1</sub> | Outside diameter of hose                                                                                   |  |  |  |  |
| EI                    | Flexural stiffness of hose                                                                                 |  |  |  |  |
| EL                    | Fitting length of hose                                                                                     |  |  |  |  |
| F                     | Force, pressure reaction force                                                                             |  |  |  |  |
| L                     | Flexible (corrugated) length of hose (description in accordance with DIN EN ISO 10380: active life length) |  |  |  |  |
| NL                    | Nominal length of hose assembly (corrugated length (ZRL) plus length of end fittings. I)                   |  |  |  |  |
| PN                    | Rated pressure (permissible operating pressure at 20 °C)                                                   |  |  |  |  |
| PS                    | Operating pressure at operating temperature TS                                                             |  |  |  |  |
| PT                    | Test pressure (at 20 °C)                                                                                   |  |  |  |  |
| Re                    | Reynold's number                                                                                           |  |  |  |  |
| R <sub>m</sub> (T)    | Temperature-dependent tensile strength value                                                               |  |  |  |  |
| S                     | Safety factor, general                                                                                     |  |  |  |  |
| S <sub>BG</sub>       | Safety factor against breakdown of braiding                                                                |  |  |  |  |
| S <sub>BR</sub>       | Safety factor against bursting of annularly corrugated hose                                                |  |  |  |  |
| Т                     | Temperature                                                                                                |  |  |  |  |
| TS                    | Operating temperature                                                                                      |  |  |  |  |
| С                     | Flow velocity                                                                                              |  |  |  |  |
| di                    | Inside diameter of hose                                                                                    |  |  |  |  |

# 7.5. Conversion tables and formula symbols

# Formula symbols used

| Formula<br>symbol                                        | Meaning                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| I                                                        | Length of end fittings                                                                                                                                                                                                                                                                    |  |  |  |
| n <sub>K</sub>                                           | Number of clappers in braiding                                                                                                                                                                                                                                                            |  |  |  |
| n <sub>D</sub>                                           | Number of wires per clapper                                                                                                                                                                                                                                                               |  |  |  |
| р                                                        | Pressure                                                                                                                                                                                                                                                                                  |  |  |  |
| $\Delta p$                                               | Flow induced pressure loss                                                                                                                                                                                                                                                                |  |  |  |
| <b>S</b> , <b>S</b> <sub>1</sub> , <b>S</b> <sub>2</sub> | Elevation of hose assembly (the bend amplitude s/2 conforms to the value y in accordance with DIN EN ISO 10380)                                                                                                                                                                           |  |  |  |
| r                                                        | Bending radius of the hose                                                                                                                                                                                                                                                                |  |  |  |
| r <sub>N</sub>                                           | Nominal bending radius of the hose in accordance with DIN EN ISO 10380                                                                                                                                                                                                                    |  |  |  |
| r <sub>min</sub>                                         | Minimum bending radius with singular bend                                                                                                                                                                                                                                                 |  |  |  |
| у                                                        | Elevation (amplitude) of hose in U-bend test (description according to DIN EN ISO 10380)<br>conforms with the value s/2 in the manual                                                                                                                                                     |  |  |  |
| w (x)                                                    | Bend of the hose, x runs in the direction of the hose axis                                                                                                                                                                                                                                |  |  |  |
| Z                                                        | Length of neutral hose end under static lateral load                                                                                                                                                                                                                                      |  |  |  |
| ZRL                                                      | Cut trim length = length of the corrugated section of the hose                                                                                                                                                                                                                            |  |  |  |
| α                                                        | <ol> <li>Bending angle of the hose - incline of the hose ends to each other for determining<br/>pressure loss</li> <li>Bending angle of the hose - deviation of the hose from horizontal/vertical plan with<br/>expansion compensation in the 90° bend</li> <li>Braiding angle</li> </ol> |  |  |  |
| β                                                        | Bending angle of the hose – deviation of hose from horizontal/vertical plane with double-<br>sided expansion compensation in the 90° bend                                                                                                                                                 |  |  |  |
| λ                                                        | Coefficient of friction for the calculation of pressure loss                                                                                                                                                                                                                              |  |  |  |
| υ                                                        | Kinematic viscosity of flowing fluid                                                                                                                                                                                                                                                      |  |  |  |
| ρ                                                        | Density of flowing fluid                                                                                                                                                                                                                                                                  |  |  |  |
| $\sigma_{\text{um}}$                                     | Mean circumferential stress in annularly corrugated hose                                                                                                                                                                                                                                  |  |  |  |
| σ                                                        | Tensile stress in a braided wire                                                                                                                                                                                                                                                          |  |  |  |
| ζ <sub>b</sub>                                           | Resistance coefficient for calculation of pressure loss with bent hose installation                                                                                                                                                                                                       |  |  |  |
| ζ                                                        | Resistance coefficient of the calculation pressure loss for hose installation in a 180° bend                                                                                                                                                                                              |  |  |  |



# Physical units (D, GB, US)

DIN1301-1, edition 10.2002

# SI base units

| Size                           | SI base unit |        |
|--------------------------------|--------------|--------|
|                                | Name         | Symbol |
| Length                         | Metre        | m      |
| Mass                           | Kilogram     | kg     |
| Time                           | Second       | s      |
| Strength of electrical current | Ampere       | A      |
| Thermodynamic temperature      | Kelvin       | к      |
| Quantity of material           | Mol          | mol    |
| Light intensity                | Candela      | cd     |

# Prefix symbol

| Prefix | Prefix symbol | Factor by which the unit<br>is multiplied |
|--------|---------------|-------------------------------------------|
| Pico   | р             | 10 <sup>-12</sup>                         |
| Nano   | n             | 10.9                                      |
| Micro  | μ             | 10-6                                      |
| Milli  | m             | 10-3                                      |
| Centi  | С             | 10-2                                      |
| Deci   | d             | 10-1                                      |
| Deca   | de            | 10 <sup>1</sup>                           |
| Hecto  | h             | 10 <sup>2</sup>                           |
| Kilo   | k             | 10 <sup>3</sup>                           |
| Mega   | Μ             | 106                                       |
| Giga   | G             | 10 <sup>9</sup>                           |

# 7.5. Conversion tables and formula symbols

## Length - SL unit metre, m

| Symbol | Name                  | in m   |
|--------|-----------------------|--------|
| mm     | Millimetre            | 0.0010 |
| km     | Kilometre             | 1000   |
| in     | Inch                  | 0.0254 |
| ft     | Foot (=12 in)         | 0.3048 |
| yd     | Yard (=3ft / = 36 in) | 0.9144 |

## Mass - SI unit kilogram, kg

| Symbol | Name           | in kg   |  |
|--------|----------------|---------|--|
| g      | Gram           | 0.00100 |  |
| t      | Tonne          | 1000    |  |
| OZ     | Ounce          | 0.02835 |  |
| lb     | Pound          | 0.4536  |  |
| sh tn  | Short ton (US) | 907.20  |  |
| tn     | Ton (UK)       | 1016    |  |

### Time - SI unit seconds, s

| Symbol | Name   | in s                                  |
|--------|--------|---------------------------------------|
| min    | Minute | 60                                    |
| h      | Hour   | 3600                                  |
| d      | Day    | 86400                                 |
| a      | Year   | 3.154 · 10 <sup>7</sup><br>(≙ 8760 h) |



#### 7.5. Conversion tables and formula symbols

### Temperature – SI unit Kelvin, K

| Symbol | Name               | in K                   | in °C                |
|--------|--------------------|------------------------|----------------------|
| °C     | Degrees Celsius    | ϑ/°C + 273.16          | 1                    |
| deg F  | Degrees Fahrenheit | ϑ/deg F · 5/9 + 255.38 | (ð/deg F - 32) · 5/9 |

#### Angle - SI unit radiant, rad = m/m

| Symbol | Name           | in rad                    |
|--------|----------------|---------------------------|
|        | Full angle     | 2π                        |
| gon    | Gon (new deg.) | π/200                     |
| 0      | Degree (deg.)  | π/180                     |
| 1      | Minute         | π/1.08 · 10 <sup>-4</sup> |
| 11     | Second         | π/6.48 · 10 <sup>-5</sup> |

## Pressure – SI unit Pascal, Pa = N/m<sup>2</sup> = kg/ms<sup>2</sup>

| Symbol                    | Name                        | in Pa   | in bar  |
|---------------------------|-----------------------------|---------|---------|
| $Pa = N/m^2$              | Pascal                      | 1       | 0.00001 |
| hPa = mbar                | Hectopascal = Millibar      | 100     | 0.001   |
| kPA                       | Kilopascal                  | 1000    | 0.01    |
| bar                       | Bar                         | 100000  | 1       |
| $MPa = N/mm^2$            | Megapascal                  | 1000000 | 10      |
| mm WS                     | Millimetres, head of water  | 9.807   | 0.0001  |
| lbf/in <sup>2</sup> = psi | pound-force per square inch | 6895    | 0.0689  |
| lbf/ft <sup>2</sup>       | pound-force per square foot | 47.88   | 0.00048 |

### Energy (also work, amount of heat) - SI unit Joule, J = Nm = Ws

| Symbol   | Name                 | in J                  |  |
|----------|----------------------|-----------------------|--|
| kWs      | Kilowatt second      | 1000                  |  |
| kWh      | Kilowatt hours       | 3.6 · 10 <sup>6</sup> |  |
| kcal     | Kilocalorie          | 4186                  |  |
| lbf x ft | pound-force foot     | 1.356                 |  |
| Btu      | British thermal unit | 1055                  |  |

### 7.5. Conversion tables and formula symbols

## Power – SI unit Watt, $W = m^2 kg/s^3 = J/s$

| Symbol | Name                   | in W  |
|--------|------------------------|-------|
| kW     | Kilowatt               | 1000  |
| PS     | Continental horsepower | 735.5 |
| hp     | horsepower             | 745.7 |

#### Volume – SI unit, m<sup>3</sup>

| Symbol          | Name        | in m <sup>3</sup>         |
|-----------------|-------------|---------------------------|
| 1               | Litre       | 0.001                     |
| in <sup>3</sup> | cubic inch  | 1.6387 · 10 <sup>-5</sup> |
| ft <sup>3</sup> | cubic foot  | 0.02832                   |
| gal             | (UK) gallon | 0.004546                  |
| gal             | (US) gallon | 0.003785                  |

# Dynamic viscosity η – SI unit Pas = kg/ms

| Symbol      | Name                  | in mPas |  |
|-------------|-----------------------|---------|--|
| Pas = kg/ms | Pascal second         | 1000    |  |
| Р           | Poise                 | 100     |  |
| сР          | Centipoise            | 1       |  |
| lb/ft h     | pound(av)/foot hour   | 0.4134  |  |
| lb/ft 2     | pound(av)/foot second | 1488.16 |  |

## Kinematic viscosity $\upsilon$ – SI unit m²/s

| Symbol | Name                 | in cST  |
|--------|----------------------|---------|
| m²/s   | square metres/second | 1000000 |
| St     | Stoke                | 100     |
| cSt    | Centistoke           | 1       |
| ft²/h  | square foot/hour     | 25.81   |
| ft²/s  | square foot/second   | 92903   |



#### 7.6 Glossary

**Abrasion protection:** Elastic intermediate layer between corrugated hose and braiding. With dynamic loads, the friction between the hose and the braiding is reduced. This results in a longer service life.

Amplitude: Greatest oscillation amplitude around the central axis.

Angular deflection: Rotation of ends of a hose assembly relative to each other.

Annularly corrugated hose: Corrugated with ring-shaped, parallel ridges.

Approval tests: → test certificates

**Axial deflection:** Adjustment of the ends of the hose assembly relative to each other in the direction of the hose axis. Braided metal hoses are only able to absorb axial movements to a very limited extent.

**Anchor point:** Support for displacement and torison-proof absorption of all pipeline forces and moments, e.g. through thermal expansion, internal pressure, rigidity, mass flow. Only light anchor points are required for the use of metal hose assemblies. It is their task to secure the hose assemblies in the mounted position and to prevent the transmission of vibrations or movements. They are attached to the transmitting pipeline immediately at the end of the hose assembly.

**Bending radius:** Radius of the hose bend in relation to the hose axis. The corresponding values are available in the appropriate data sheet of the metal hose. With corrugated hose assemblies, it is necessary to differentiate between the smallest permissible bending radius, the minimum bending radius for one-off movements and the nominal bending radius for frequent movements. The minimum bending radius must only be used with static loads, e.g. for balancing of assembly inaccuracies. The hose should not be bent with this radius more than 4-5 times. The minimum bending radius of stripwound hoses is the bending radius through which the hose can be bent to a minimum without causing plastic deformation.

### 7.6 Glossary

**Braiding:** Single or multiple wire round section braiding on the outside of the metal hose. To prevent the hose stretching through internal pressure, the braiding is connected to the ends of the hose fittings on both sides.

**Buckling protection:** Mostly a stripwound hose with engaged profile attached to the area of the corrugated hose ends to prevent falling below the minimum bending radius.

**Burst pressure:** Pressure, where the hose assembly fails due to a visible leak or a broken component. According to DIN ISO 10380, the burst pressure must be at least four times the permissible operating pressure.

**Connection fitting:** Connecter for functional connection of the metal hose with associated lines or devices. The hose fitting is characterised by the hose and connection link. In most cases, HYDRA metal hoses are supplied as pre-finished units (hose assemblies) complete with connection fittings (flanged joints, threaded connections, welding ends etc.). In addition to the connection fittings listed in the tables, the hoses can be fitted with practically any welded, brazed or screw-on connection.

**Corrugated hose:** Pressure-tight metal hose with corrugated profiling in the wall. The elasticity of the corrugated flanks gives the corrugated hose great elastic pliability. The two basic types are: annularly corrugated hose and helically corrugated hose.

**Corrugation crest:** Torus-shaped half shell, which limits the corrugation on the outside diameter (outer crest) or on the inside diameter (inner crest).

**Corrugation flank:** Connection of outer and inner crests. The two corrugation flanks in a corrugation can positioned in parallel or at a slant.

**Corrugation:** Smallest functional element of a corrugated hose, corrugated bellows and corrugated pipes whose profile guarantees both compressive strength and tightness.

**Cross-section form:** Mostly round, but stripwound hoses are also available in quadrilateral and polygonal form.



HYDRA

**DN:** → nominal diameter

Documentation: → test certificates

**Double hose assembly:** Two hose assemblies pushed together with larger or smaller differences in cross-sections. One of the lines, usually the inner one, conveys liquid, whilst the outer line conveys a heating medium or a refrigerant. In other cases, the outer pipeline – the coated pipeline – is purely a safety device that is either evacuated and controlled appropriately or is filled with gas or liquid and which acts as a buffering component.

**Double pipeline:**  $\rightarrow$  double hose assembly

**Effective cross-section:** The cross-section area, which determines the size of the axial force under internal or external pressure. It is approximately the area of the average corrugation diameter.

**Elevation**, **elevation movement**: In the U-bend configuration test, parallel displacement of both ends of a metal hose in 180° bend at the hose level.

**Expansion joint:** Metal bellows with connection fittings on both sides and, if necessary, with anchors to absorb the pressure reaction forces or targeted restriction of flexibility. They are used to balance axial, angular and/or lateral deformation in piping.

**Fully flexible hose length:** Length of the hose without end sleeves, without connectors ISO 10380: effective length.

Helically corrugated hose: Corrugated hose with helical, circumferential corrugations.

Inside diameter: Diameter of the largest sphere that can be pushed through the hose.

**Insulation:** HYDRA metal hoses can be supplied ex works for different purposes with insulation. In most cases, the hoses are fitted as required by the customer with suitable bindings, insulating sheaths or other special insulation materials. Care should be taken to ensure no corrosive materials are used.

7.6 Glossary

**Interlocked profile:** Stripwound hose profile made from metal strips folded into each other.

Internal load: Usual pressure load that affect the inner surface of the hose.

**Lateral movement:** Relative offset of the ends of the hose assembly, perpendicular to the hose axis.

**Leakage rate:** The volume of test medium the flows through a leak as a result of a pressure difference within a set period of time. The SI unit of the leakage rate is N m/s, the standard unit is mbar I/s. A leak with a leakage rate of  $10^{-8}$  mbar I/s occurs if there is a pressure increase of 1 mbar in an evacuated component, with a volume of 1 litre, in  $10^{-8}$  seconds, that is approx. 3 years. This leak corresponds to a pore size of less than  $10^{-4}$  mm.

Length assessment; Total length/nominal length (NL): Tolerated delivery length of a hose assembly, i.e. total length including length of fittings, typically measured from weld connection to weld connection, sealing surface to sealing surface etc. neutral hose length: additional, flexible hose length to prevent movement in the area of the connections. In this calculation, the neutral hose length is added to the minimum length required to absorb the movement. The calculation formulas in this manual take into account a neutral length, should this be necessary.

**Load cycles, load cycles endured:** A load cycle (alternation of load) is the single movement of a hose and return to its original position. The load cycles endured is the number of alternations of load achieved up to a certain event (breakdown, end of operation, exchange).

Material certificates: → Test certificates regarding the chemical analysis and mechanical characteristics of the material used.

**Metal bellows:** Flexible, short line component made of metal, whose large axial and bending flexibility is based on a profiling of its wall. The four basic types are corrugated bellows, diaphragm bellows, lenticular bellows, toroidal bellows.



**Metal hose assembly:** Flexible pipeline with high, elastic pliability. It consists of a metal hose, with connection fittings on both sides and, in the case of corrugated hoses, often an outer braid.

**Metal hose:** Flexible component of a metal hose assembly, whose large elastic pliability is based on a profiling of its wall. The two basic types are: stripwound hose and corrugated hose.

#### Minimum bending radius: → bending radius

**Movement:** Relative movement of the two ends of the hose assembly to each other. By definition, corrugated hoses should only carry out bending movements, i.e. sideways movements (angular, lateral). The direction of movement here is on the same level as the hose axis. With very small amplitudes, such as those which occur with vibrations, all-round movements can be absorbed by the hose, e.g. with 90° installation for the absorption of vibrations.

**Neutral hose length:** Additional hose length to reduce movement in the area of the connections. In this calculation, the neutral hose length is added to the minimum length required to absorb the movement. The calculation formulas in this manual take into account a neutral length, should this be necessary.

#### Nominal bending radius: → bending radius

**Nominal diameter (DN):** Characteristic value for piping. Its numerical value approximately corresponds to the inside diameter in mm.

#### Nominal length (NL): → total length

**Nominal pressure (PN):** The nominal pressure is a key figure, usually abbreviated to PN and referring to the pressure; it is dimensionless.

The numerical value of the nominal pressure indicates the operating pressure in bar at 20°C. The "permissible static operating pressure at 20°C SF4" as indicated for all hose types is also to be understood as a nominal pressure, though dimensioned. The PN according to ISO 10380 is a particular nominal pressure: the hose assemblies were type-tested at PN. The following, amongst others, were hereby

### 7.6 Glossary

tested: burst pressure, elongation under pressure, number of load cycles in U-bend.

**Operating pressure:** → permissible operating pressure (PS)

**Operating temperature:**  $\rightarrow$  permissible operating temperature (TS) **Outside diameter:** Describes the outer diameter of metal hoses measured from the vertex of the hose profile (D) or of the hose braiding (D1).

**Parallel corrugation:** Corrugation structure with evenly spaced parallel ridges and with a main level perpendicular to the hose axis.

**Permissible operating pressure (PS):** According to the definition of the pressure device guidelines, this is the maximum permissible continuous operating pressure (or design pressure) for the pressure tank (here hose) in bar at the min./ max. permissible operating temperature TS.

**Permissible operating temperature (TS):** According to the definition of the pressure device guidelines, the min./max. permissible continuous operating temperature (or design temperature) in °C for the pressure tank at the maximum permissible operating pressure PS.

**Pitch:** Distance between neighbouring corrugations, e.g. distance from outer apex to outer apex in axial direction of the hose.

**PN:** → nominal pressure

**Pressure hose:** → pressure-tight hose → corrugated hose

Pressure: → burst pressure, permissible operating pressure

**Production length:** The production lengths given in the tables are the production lengths on hoses sold by the metre without assembly.

**Profile height:** Distance between inner and outer apex in radial direction to the hose.



#### 7.6 Glossary

**PS:** → permissible operating pressure

**Quick release coupling:** Connection fitting made of two coupling halves (male, female parts) for a metal hose assembly. The coupling process involves pressing the two halves together and linking them by turning cam levers.

**Reduction factor** for the compressive strength with increased operating temperatures ( $C_t$ ): this takes into account the drop in stability of materials with operating temperatures over 20 °C and is also defined by the relationship of the 1% yield point of the component with a working or calculated temperature-to the 1% yield point at 20 °C. The lowest value of all the individual components applies in the case of components made up of several materials.

#### Rotation: $\rightarrow$ torsion

**Round wire coil:** Additional, external protection against abrasion with rough operating conditions.

**Sealing:** With the removable connection fittings for corrugated hoses, it is possible to differentiate between metal-sealing and flush-sealing connections and those which seal in the thread. Please select the type of connection or sealing materials suited to your application, in particular with regard to stability (medium/ temperature) and reuse.

**Service life:** Is dependent on the operating conditions and the movement strain. With dynamic loads, it is generally the case that the service life indicates the number of load cycles performed before the first leak.

**Stripwound hose:** Metal hose made of profiled and helically-wound metal strips. The two basic types are: stripwound hose with engaged profile and stripwound hose with seam/interlocked profile.

**Stripwound hose with engaged profile:** Stripwound hose, whose profile coils loosely overlap or intermesh with hooks on the strip edge. With increased tightness requirements, a sealing thread can be woven into the profile.

#### 7.6 Glossary

**Stripwound hose with interlocked profile:** Stripwound hose, whose profile coils loosely intermesh with seams on the strip edges. These profiles are mostly produced metallically sealed without additional sealing threads.

Temperature factors: → reduction factor

**Test certificates:** Documentation of tests and certification of component characteristics.

**Test pressure:** Excess pressure to which the hose assembly is exposed before set up. HYDRA corrugated hoses are checked for leak tightness and compressive strength before delivery. The test pressure for Witzenmann metal hose assemblies may not exceed 1.5 x nominal pressure. If not specified otherwise hoses are tested with 10 bar.

**Torsion:** Rotation of metal hose around its longitudinal axis. Torsion leads to a significant reduction in the service life of metal hose assemblies. Attention must be paid during mounting to ensure that the hose assemblies are mounted in a torsion-free manner and are not twisted by future movement strains.

**Total length / nominal length (NL):** Tolerated supply length of hose assembly, i.e. cut trim length plus fittings length. Corrugated length / pure hose length: cut trim length of the metal hose (ZRL)

**TS:**  $\rightarrow$  permissible operating temperature

**Variations in pressure / pulsations:** Can also significantly reduce the service life of a metal hose through fatigue processes.



## 7.7. Inquiry specification

If the customer does not provide any details of the medium and operating conditions, we assume the hose assembly comes under the category of so-called "sound engineering practice", in the sense of the pressure equipment directive.

| Specification for HYDRA met                                                             | al hose assemblies          |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------|--|--|
| Position                                                                                |                             |  |  |
| Quantity                                                                                |                             |  |  |
| Hose/braiding type designation                                                          | on                          |  |  |
| Material                                                                                | Metal hose                  |  |  |
|                                                                                         | Braiding                    |  |  |
| Nominal diameter DN                                                                     |                             |  |  |
| Nominal length                                                                          |                             |  |  |
| Type designation of connection fittings or connection dimensions                        |                             |  |  |
| Medium                                                                                  |                             |  |  |
| Pressure<br>(bar)                                                                       | Operating pressure          |  |  |
| inside 🗌 constant 🗌                                                                     | Design pressure (poss.)     |  |  |
| outside 🗌 intermittent 🗌                                                                | Test pressure               |  |  |
| Operating temperature in °C                                                             |                             |  |  |
| Movement                                                                                | Type and size               |  |  |
|                                                                                         | Load cycles endured         |  |  |
| Installation form                                                                       | 90° / 180° / straight       |  |  |
| External influences                                                                     | Mech. / chem. load          |  |  |
|                                                                                         | Miscellaneous               |  |  |
| Vibrations                                                                              | Ampl. (mm) / frequency (Hz) |  |  |
|                                                                                         | Direction                   |  |  |
| Acceptance test procedure / certification<br>Hose / braiding / fittings / pressure test |                             |  |  |
| Miscellaneous                                                                           |                             |  |  |

7.7. Inquiry specification

























| Notes |
|-------|
|-------|





